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1. INTRODUCTION

Our understanding of the electronic structure of molecules
often comes from spectroscopic investigations in which electro-
magnetic radiation is applied to a molecule and the scattering or
absorption of the radiation is measured."” These experimental
techniques probe the structure of molecules by observing their
response to applied electromagnetic perturbations. Such mea-
surements provide a detailed picture of molecular systems, often
rich in detail and sometimes difficult to interpret.

Over the last few decades, molecular electronic-structure
theory has developed to a stage where it can provide invaluable
help in the interpretation of experimental measurements of a broad
range of molecular properties of importance in rotational and
vibrational spectroscopies,® ultraviolet—visible spectroscopies,*’
magnetic-resonance  spectroscopies,” ° linear and nonlinear
optics,"”'* and so on. In all these fields, spectroscopic constants
can be calculated at various levels of electronic-structure theory,
capable of approaching the exact value in a controlled, systematic
manner, using established hierarchical levels of theory. At the same
time, methodological developments toward larger systems are being
made in different laboratories, promising to make calculations of
molecular properties of systems containing hundreds and thousands
of atoms routine in the near future.'’~'* In the present review, we
discuss these developments in computational molecular electronic-
structure theory. Our emphasis is on molecular response theory
based on construction of a many-electron wave function, concen-
trating on developments during the past decade. As such, we do not
discuss the various electronic-structure models themselves in any
depth nor do we consider optimization of the energy and wave
functions. Also, we do not discuss here calculations of molecular
properties based on density-functional theory (DFT) except indir-
ectly in our discussion of techniques for Hartree—Fock theory.

This review is divided into eight sections. Following the
Introduction, we discuss in section 2 the molecular electronic
Hamiltonian, including an overview of the Breit—Pauli Hamil-
tonian and the second-quantization formalism, extensively used
in the remaining sections. Next, in section 3, we review response
theory for exact states, providing a flexible quasi-energy frame-
work subsequently used for approximate states in section 4,
which contains detailed expositions of response theory for
Hartree—Fock self-consistent field (SCF) theory, multiconfi-
gurational SCF (MCSCF) theory, coupled-cluster theory, and
Moller—Plesset theory. Following this exposition of response
theory, we give a survey of molecular properties in section S,
covering geometrical properties and spectroscopic constants,
magnetic resonance parameters, linear and nonlinear electro-
magnetic properties including nonlinear optics and birefrin-
gences, excitation energies, and excited-state properties.
Following discussions of pure vibrational corrections in section
6 and molecular properties in liquids and solids in section 7, some
concluding remarks are given in section 8.

2. ELECTRONIC HAMILTONIAN

In the present section, we discuss the electronic Hamiltonian
with emphasis on those aspects that are important for evaluation
of molecular properties. First, in section 2.1, we discuss the
nonrelativistic electronic Hamiltonian in an external electromag-
netic field and survey the Breit—Pauli relativistic corrections to
second order in the fine-structure constant. In section 2.2, we
introduce nuclear electromagnetic fields into the electronic
Hamiltonian, thereby arriving at the molecular electronic

Breit—Pauli Hamiltonian appropriate for molecular response
calculations. Much of the exposition of molecular response theory
given in the present review is presented using the formalism of
second quantization. In section 2.3, we give a brief introduction
to this formalism, in particular, we transform the molecular
electronic Breit—Pauli Hamiltonian developed in section 2.2 to
the second-quantization representation. Finally, in section 2.4,
we discuss the effects of perturbation-dependent basis sets for the
second-quantization representation of the molecular Hamiltonian
and calculation of molecular properties.

2.1. Many-Electron Hamiltonian

In this subsection, we discuss the nonrelativistic Hamiltonian
of an electronic system in the presence of an electromagnetic
field and its relativistic corrections within the framework of the
Breit—Pauli Hamiltonian. Particular attention is paid to the
description of electromagnetic interactions and introduction of
electron spin. The electronic Hamiltonian developed in this
subsection forms the basis for the molecular electronic Hamiltonian
discussed in section 2.2, where we introduce the effects of nuclear
charges and nuclear magnetic moments. For a more thorough
discussion of the electronic Hamiltonian, see ref 185.

2.1.1. Classical Particles in an Electromagnetic Field. In
the presence of an electric field E(r,t) and a magnetic field (or
magnetic induction) B(r,t), a classical particle of charge z moving
with velocity v experiences the Lorentz force F (in Cartesian
coordinates)

F = z(E + v x B) (1)

which is velocity dependent and hence nonconservative. The
motion of the particle is determined by Newton’s equation of
motion (subject to boundary conditions)

F = ma (2)

where m is the mass of the particle and a its acceleration. The
electric and magnetic fields E and B satisfy Maxwell’s equations

V-E = 4mp (3)
V X B—c2)E = 4c (4)
V-B=0 ()
VXE+ 9B =0 (6)

in the short-hand notation d; = 9/0t. Here and in the following,
we employ SI-based atomic units'® where me=1,e=1,andh=1.
In addition, the electric and magnetic constants satisfy 47re, = 1
and 47, = ¢, respectively. When the sources, that is, the charge
density p(r,t) and the current density J(r,t) generated by all
particles in the system, are known, Maxwell’s equations can be
solved for E(r,t) and B(r,t). Conversely, since the particles are
driven by the Lorentz force, p(r,t) and J(r,t) depend on E(r,t)
and B(r,t). In principle, therefore, we must simultaneously solve
Maxwell’s equations for the electromagnetic field and the classi-
cal equations of motion for the particles.

Maxwell’s equations consist of two distinct pairs of equations:
the inhomogeneous equations in eqs 3 and 4 and the homo-
geneous equations in eqs S and 6. The homogeneous equations
are exact relations between the components of E and B,
independent of the charges and currents in the system. Indeed,
the homogeneous equations are automatically satisfied by
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expressing the fields in terms of a scalar potential ¢(r,t) and a
vector potential A(r,t) such that

E(r, t) = — Vo(r, t) — dA(r, t) (7)

(8)

The potentials (¢,A), which contain four rather than six compo-
nents as in (E,B), are subsequently obtained by solving the first,
inhomogeneous pair of Maxwell’s equations subject to boundary
conditions (usually that the fields go to zero at an infinite distance
from the sources). However, the scalar and vector potentials ¢
and A are not unique in the sense that gauge transformations of
the potentials

¢ =¢—0f

B(r,t) = V X A(r, t)

)
(10)

where the gauge function f(r,t) depends on r and ¢, do not affect
the physical fields generated from the potentials by eqs 7 and 8.
We are thus free to choose f so as to make ¢ and A satisfy
additional conditions. In the Coulomb gauge, the gauge function
is chosen such that the vector potential becomes divergenceless

V-A=0 (11)

In the following, we shall always work in the Coulomb gauge,
in which the scalar potential is given by the instantaneous
Coulomb interaction, corresponding to the strict nonrelativistic
limit of electrodynamics."” Retardation and magnetic interactions
appear as relativistic corrections through the purely solenoidal
(divergenceless) vector potential. Indeed, as the speed of light ¢
tends to infinity in Maxwell’s equations in eqs 3—6, the divergence
and curl of the magnetic field vanish, which combined with the
boundary conditions suggests that, in the strict nonrelativistic limit,
the magnetic field is zero everywhere. Non-Coulomb gauges have
been explored for ab initio calculation of magnetic properties,"® "
but these have not gained widespread use.

2.1.2. Classical Hamiltonian. In classical Hamiltonian me-
chanics, a system of particles is described in terms of their
positions ¢; and conjugate momenta p,. For each system, there
exists a scalar Hamiltonian function H(q,p;) such that the
classical equations of motion are given by

— 0, H

A=A+ Vf

(12)

where dp; = 9/9p; and 9g; = 9/9g;. The corresponding equations
for continuous systems are obtained by replacing the Hamiltonian
function with the Hamiltonian density, the positions and momenta
by the corresponding field variables, and the partial derivatives
with functional derivatives. For a system of particles and fields,
the Hamiltonian separates into three parts

H:Hp+Hf+Hint

qi = OpH, p;

(13)

corresponding to the particles, the fields, and their interaction.
The corresponding equations of motion are rarely solved self-
consistently. Rather, the degrees of freedom associated with
either particles or fields are frozen, that is, treated as parameters,
and the equations of motions are developed for the remaining
variables. If the particles are treated as sources, then the particle
term Hj, drops out of the equations of motion, which then reduce
to Maxwell’s equations. When calculating molecular properties,
on the other hand, we consider the response of molecules to

546

externally applied electromagnetic fields and so the field term Hy
drops out of the equations of motion.

The classical Hamiltonian for a single particle of mass m and
charge z moving in an external electromagnetic field E and B is
obtained from the free-particle Hamiltonian by the substitutions

p—a=p—zA, H—H + z¢(r, t) (14)

corresponding to the principle of minimal electromagnetic
coupling®** based on a relativistic coupling of particles and
fields."” The coupling is minimal in the sense that it is the
minimal coupling of particles and fields consistent with gauge
invariance of the corresponding Lagrangian density.”* In the
nonrelativistic case, we then obtain the Hamiltonian
2
) (15)
2m

The first of Hamilton’s equations in eq 12 allows identification of
the nonrelativistic kinetic momentum as

H(r, p)

T = mv (16)
Its total time derivative is the Lorentz force in eq 1, as can be
shown from the second of Hamilton’s equations.

2.1.3. Schrodinger Hamiltonian. To arrive at a quantum-
mechanical description of the electron (i.e., a particle with charge
z=—e=—1auand mass m = m, = 1 au) in an electromagnetic
field, we perform the substitutions p— —iV and H —id;in eq 15
followed by multiplication with the wave function W(r) from the
right, yielding the time-dependent Schrodinger equation

18”‘1‘ - chlp (17)

with the electronic Schrodinger Hamiltonian

2

We may expand the kinetic-energy operator 71°/2 in eq 18,

yielding the following expression for the electronic Hamiltonian
in the Coulomb gauge

1, 12

Hi. ZEP +AP +£A _(I’

(19)

In an electromagnetic field, the vector potential thus makes both
a linear paramagnetic contribution A-p and a quadratic diamag-
netic contribution A%/2 to the Hamiltonian. The diamagnetic
contribution may be viewed as a small positive correction A”/2 to
the interaction —¢ of the electron with the scalar potential.
Consider now a uniform magnetic field B. In the Coulomb
gauge, such a field may be represented by the vector potential

Adﬂ:lem:%Bx@—m (20)

2
which vanishes at the gauge origin O. Using this potential, we
may write the paramagnetic interaction in the form

(21)

Thus, the paramagnetic interaction is proportional to the com-
ponent of the orbital angular momentum I of the electron about
the gauge origin O and along the direction of the external
magnetic field B. It turns out, however, that this treatment of
the interaction of the electron with the external magnetic field is

1
Ao'P = EB'IQ, 10 =ro X P

dx.doi.org/10.1021/cr2002239 |Chem. Rev. 2012, 112, 543-631
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inadequate as it ignores a fundamental property of the electron,
namely, its spin.
2.1.4. Pauli Hamiltonian. The two-by-two Pauli spin matrices

0 1 0 —i 1 0
Oy = g, = g,=
* 1 o) 77 i 0) 7* 0 -1

were introduced by Pauli in 1927%° and are matrix representations of
twice the spin operator s for s = 1/2. They satisfy the algebra

(22)

where the Kronecker delta d; is 1 for identical indices and 0
otherwise whereas the Levi— Civita antisymmetric symbol & is +1
for even permutations of the indices, —1 for odd permutations, and
0if two or more indices are identical. Using the relation in eq 23, we
easily deduce the Dirac identity

(0-A)(0-B) = A*B + io x (A X B) (24)
of which a particular instance is the simple relation

(0-p)" =p’ (25)

It suggests that spin is hidden in the nonrelativistic free-particle
Hamiltonian. However, a difference between the left- and the right-
hand sides of the above identity occurs when external electromag-
netic fields are introduced through the minimal substitutions, eq 14.
Starting from the left-hand side of the identity, we obtain a
Hamiltonian of the form

H. — %(a-;r)z - %nz 4 %(U-B) ! (26)

whereas the right-hand side leads to a Hamiltonian in which the
spin—Zeeman interaction (the second term above) is absent.

For a proper quantum-mechanical description of the electron,
we therefore need a two-component wave function, which in the
Pauli representation of eq 22 satisfies the Schrodinger equation

. W, (f )
i0; ( Wy (r) )

1 .

Eﬂz ¢+ B B—iB W (r)

= 1 w27
B, + iB, Enz—q)—Bz B

The two components are coupled only in the presence of an
external magnetic field. Alternatively, we may equip the electron
with an additional discrete coordinate o = 1/2 in the manner
W(x) = W(r,0), where W(r, ££1/2) are two states whose lower
and upper components vanish, respectively. The spin interaction
is interpreted by associating a magnetic moment with the spin of
the electron
e 1

= —au (28)

m:ge//‘BS;ge:_z’/‘B:% 2

where we introduced the electron g factor g. and the Bohr
magneton Up. Here, we set the electron g factor equal to the
value predicted by the Dirac equation, whereas its recommended
value, including quantum-electrodynamics corrections, is g. =
—2.0023193043622(15).>° The spin paramagnetic term may
now be written as a Zeeman interaction —B-m of the external

induction with the magnetic moment of the electron. Thus,
the two-component Hamiltonian eq 26 differs from the one-
component Hamiltonian eq 18 only in the presence of the
Zeeman term

H2c = ch —B'm (29)

In the absence of an external magnetic field, the one- and two-
component nonrelativistic Hamiltonians are equivalent and the
two components of the wave function are not coupled. The total
paramagnetic Zeeman interaction with a uniform magnetic field
may therefore be written in the form

1
Hz = _B'mtot; Moy — _5(10 + 25) (30)

where lg is the orbital-angular momentum of the electron about
the gauge origin O, see eq 21. We note the anomalous double
weight of the spin angular momentum in the magnetic dipole-
moment operator my, in eq 30.

From the one-electron Pauli Hamiltonian in eq 26, we obtain
the N-electron Pauli Hamiltonian by adding pairwise Coulomb
interactions to the sum of N one-electron Hamiltonians

1(%(":"”:‘)2—4’,-) + i =

1, 1o
5P + Aip; + Bitsi + EAi -9

N1

~ (31)

ri;'

I
M=

HNR

i

|
=

i=1

_|_

i>j=1

adopting the short-hand notation ¢; = ¢(r,t) and so on for the
potentials and fields at the position of electron i. In nonrelativistic
quantum mechanics, a many-electron system is described by an
antisymmetric N-particle wave function W(x,, x,, ..xy) that
satisfies the time-dependent Schrodinger equation

i0,W(xy, ..xy, t) = HUW(x,, ..xy, 1) (32)

using the nonrelativistic electronic Pauli Hamiltonian of eq 31.
Before we consider the potentials ¢ and A characteristic of molecular
systems, we shall briefly consider the relativistic corrections to this
Hamiltonian.

2.1.5. Breit—Pauli Hamiltonian. In a relativistic treatment
of many-electron systems, the Dirac—Coulomb—Breit Hamiltonian
is often used'>*’

HY® = ¥ e ) — ¢ + B
;- ca (co; Vi)(Caj : Vj)

ctr 2c%

1 1 1
_l’__ - — —

(33)

where @ and f3 are the four-by-four Dirac matrices, which in
terms of two-by-two submatrices take the form

(e e

For a fully relativistic treatment of the electronic system, we may
now solve the Dirac—Coulomb—Breit equation

1% (r, t) = H""W(x, 1) (35)

dx.doi.org/10.1021/cr2002239 |Chem. Rev. 2012, 112, 543-631
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which, due to the presence of negative-energy states, is done with
the explicit or implicit use of projection operators onto the
positive-energy states defined with respect to the current or some
reference potential.”” We note that this equation is only approxi-
mately Lorentz invariant, the two-electron part being correct
only to second order in the fine-structure constant

2
a = %z7.297 x 1073 (36)
The zero-order two-electron term in eq 33 is the Coulomb term,
which is constructed from the interaction of one electron with
the scalar potential of another electron defined with respect to
the nuclear framework; it has the form of an instantaneous
charge—charge interaction. Although it has the same form as in
the nonrelativistic domain, the physical content is different in
that it gives rise to the spin—same-orbit interaction. The second-
order term in eq 33, the Breit term, arises from the interaction of
one electron with the lowest order contribution of the corre-
sponding vector potential and gives rise to the spin—other-orbit
interaction. It has the form of a current—current interaction, as
seen from the presence of the relativistic velocity operator ce.
Reducing the Dirac—Coulomb—Breit Hamiltonian to two-
component form, we obtain the Breit—Pauli operator

HEP — gNR | MV | pDW iSO | S0
+ H% + H® + 0(a) (37)
where the leading term is the usual Pauli Hamiltonian in eq 31

= Y oa LB T4+ Z— (38)

2ign

and the lowest order relativistic corrections are given by

o? o?
HMV = —g Z(]T?—FB?) —I 2 (ﬂ?Bi'Si‘FBi'Siﬂ?)
(39)
al
HPWY ZKZ(V;E ——Zér,, (40)

i i

2
H50 — %Z si*(B; X T, — ; X E;)

i

S;*I; X JT;
-z Z - (41)
2 7 ’/
X JT;
HSoO — Z SJ r’l (42)
i#j iJ'

_a Z rt]s, §j — 38; "I ° S B 402
= < 3

L= i

Z 6(1‘1']')51' . S}'
7

(43)
a? T rﬂ' + Terry e T

H® = — = 44
4 iZ rg ( )

Whereas the mass—velocity operator in eq 39 provides a correction
to the kinetic energy, the Darwin operator in eq 40 corrects the

potential energy of the electrons and their two-electron
repulsion energy for the charge smearing caused by their
Zitterbewegung."® The spin—same-orbit operator or simply
spin—orbit operator in eq 41 couples the spin of each electron
to its own orbital motion in the presence of the external
potential and the other electrons. The last three terms in
eqs 42—44 couple different electrons to each other: the spin—
other-orbit operator in eq 42, the spin—spin operator in eq 43,
and the orbit—orbit operator in eq 44.

2.2. Molecular Electronic Breit—Pauli Hamiltonian

Thus far, we have treated the electrons without specifying the
scalar and vector potentials ¢ and A in which these particles
move. In molecular systems, the most important contributions to
these potentials are from the nuclei. In addition, there may be
contributions from externally applied electromagnetic fields. To
arrive at the molecular electronic Hamiltonian, we shall identify
the nuclear contributions to the potentials ¢,,,c and A, and then
perform the substitutions

O(r) = puc(r) + ¢(x) (45)

A(r) = Apuc(r) + A(r) (46)

in the Breit—Pauli Hamiltonian eq 37 yielding the molecular
electronic Breit—Pauli Hamiltonian."> On a phenomenological
basis, we also include in this Hamiltonian purely nuclear terms,
which involve internuclear interactions or interactions of the
nuclei with external electromagnetic fields. However, staying
within the Born—Oppenheimer approximation, we treat the
nuclei as stationary particles and do not introduce terms that
involve the motion of the nuclei.

2.2.1. Nuclear Electromagnetic Potentials and Fields.
Nuclei are complicated many-body systems. For our purposes,
they are sufficiently well characterized by their charges Zy, their
radial extents 97y, their traceless quadrupole moments @, and
their magnetic moments My. From these charges and moments,
we arrive at the following multipole expansions of the nuclear
contributions to the potentials in eqs 45 and 46

bult) = T K-S 2030 (n0)

K 'k

1 trOx (3rgry — 21
n : 2 k( KsK +13) (47)
K "k

KXI‘K

Anuc = 2 Z

where we ignored higher order moments as well as all non-
electromagnetic interactions such as those arising from parity
violation, see ref 28 and references therein. To leading orders, the
corresponding nuclear electric and magnetic fields are given by

(48)

Zkr,
Enuc(r) - Z K3K (49)
K Tk

3(Mg - — M
Bnuc (l‘ ) 2 Z K :K e
K

+ —a2 2 O(rx)M (50)
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For symmetry (parity) reasons, there are no odd-order electric
moments and no even-order magnetic moments in the expansions of
the nuclear potentials."> Among the different contributions to the
nuclear potentials in eqs 47 and 48, by far the largest is the
electrostatic contribution from the nuclear charge Zy; indeed, the
resulting nuclear point-charge potential is responsible for generating
stable molecular structures. The remaining contributions to the
potentials are orders of magnitude smaller, representing small
corrections to the point-charge nuclear model and being responsible
for the hyperfine interactions in atoms and molecules.

The contact and quadrupolar interactions in eq 47 depend on
the size and shape of the nucleus as represented by the radial
extent and traceless quadrupolar moments

Zx Ry = / 7 py (r)dr (51)

Ok = %/(31‘1'T — ;) p (r)dr (52)

where pg(r) is the nuclear charge distribution. From eq 51, we
note that the finite size reduces the potential at the nucleus,
increasing the total energy. Since nuclear sizes are of the order of
1 fm, the correction is small, in particular, for light nuclei. The
finite nuclear size may alternatively be corrected for bg repre-

) . 1270
senting the nucleus by a Gaussian charge distribution

pi(rc) = Zk (n—K> 3/ZeXp( — k") (s3)

where 77 = (3/2) 9% Gaussian distributions or linear combina-
tions of such distributions are used since they simplify calculation of
integrals over Gaussian atomic orbitals (AOs).”® Integrated over all
space, the potential from the Gaussian nucleus becomes

/ pK(rK)dr _ Zyerf (\/Mrx)

Tk Tk

(54)

where the strictly increasing error function 0 < erf(x) < 1 reduces
the potential at the nucleus. The traceless quadrupolar moments in
eq 52 interact with the field gradients at the position of the nuclei in
eq 47, providing a correction for nonspherical charge distribution.>

The nuclear magnetic moments My in eq 48 arise from the
nuclear spins I, to which they are related as

My = grpnlx = yihlx (85)

where iy = eli/2m,, is the nuclear magneton, gx is the nuclear g
value, and Y is the magnetogyric ratio of the nucleus. The nuclear
magneton is numerically small, about 2.7 x 10~ * au. The nuclear g
value gr is a dimensionless empirical constant, different for each
nucleus. It is on the order of unity (its absolute value never exceeds
six) and may be positive or negative. The nuclear magnetic moments
are therefore roughly 3 orders of magnitude smaller than the
electronic magnetic moment m in eq 28. Only nuclei with spin
1/2 or greater have a nonvanishing magnetic dipole moment.

Finally, we take the purely nuclear contributions to the
electronic Hamiltonian to be of the form

1
H = -y + Y Zxdp — Y, B-Mg
ZK#L Rir K K

+a72 5 Ry (Mg -Mp) — 3(Mg *Ri ) (Rir -My)
2

KZL Riy

ZKZL

(36)

where we included the pairwise Coulomb repulsion between
nuclei of charges Zyx and Z; and separation Ryy, the inter-
action with an external scalar potential ¢x = ¢p(Rg) at the
nuclear position Ry, the Zeeman interaction of the nuclear
magnetic moments My with a uniform external magnetic
induction B, and the pairwise dipolar magnetic interactions
between nuclei of magnetic moments Mg and My and relative
positions Rgr = R — Ry. Unlike in the electronic spin—spin
operator in eq 43, there is no nuclear—nuclear contact term
since the stationary nuclei never occupy the same point
in space.

2.2.2. Molecular Electronic Breit—Pauli Hamiltonian.
Substituting the nuclear potentials in eqs 47 and 48 and the
fields in eqs 49 and SO into the electronic Breit—Pauli
Hamiltonian in eq 37 and adding the purely nuclear contribu-
tions in eq 56 we arrive at the molecular electronic Breit—Pauli
Hamiltonian. There are many ways to collect the terms in the
resulting Hamiltonian. Our classification is based on the nature
of the physical mechanisms and interactions rather than on the
number and kinds of particles involved in each interaction,
giving

Hiyin < kinetic energy
+HCOL1
+He¢ — external electric interactions

~— Coulomb interactions

+H, <— Zeeman interactions
mol ) +H,, < spin—orbit interactions
+Hg ~— spin— spin interactions
+H,, < orbit—orbit interactions

+ Hg, <~ ot diamagnetic interactions

(57)

Before considering the individual terms, we recall that the
nuclei are treated as stationary sources of electromagnetic
fields, thereby excluding all terms involving nuclear motion.
Moreover, although the electrons are treated relativistically
only to order a? we retain diamagnetic terms (which are on
the order of a* assuming that the external fields are on the
order of @) since they are spectroscopically important and
needed for calculation of molecular magnetic properties as well
as to maintain formal gauge invariance. With these remarks, we
are ready to survey the various contributions to the molecular
electronic Breit—Pauli Hamiltonian.

2.2.3. Kinetic Energy. The Breit—Pauli kinetic-energy op-
erator in eq 57 is given by

I i
Hin = ZZV,. SZV,. (58)

The first term is the usual Newtonian kinetic-energy operator.
The second term is the mass—velocity term, which arises
because of the relativistic dependence of mass on velocity.
The mass—velocity correction is always negative and repre-
sents, together with the one-electron Darwin correction de-
scribed shortly, the major contribution to the relativistic energy
correction for slow electrons. The mass—velocity term is
unbounded from below. It (and the other small terms in the
Breit—Pauli Hamiltonian) should therefore not be used in
variational calculations.***?
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2.2.4.Coulomb Interactions. In the Breit—Pauli Hamiltonian
in eq 57, the Coulomb interactions are represented by

ZxZ,
Heow= — - = Z + = 2 Ko
iK er 1#} rl] K#L RKL
+— Z ZK(S l',K —_— Z (3 I',]
2 i#j
27 1 « tr®g(3rigrk, — 121
TELS W R TIPS et
3K 3K Tik

(59)

The first three operators are the usual nonrelativistic point-
charge interactions among electrons of charge —1 and nuclei of
charge Zy, followed by the Darwin corrections (fourth and fifth
operators) caused by the Zitterbewegung of the electrons. The
one-electron Darwin correction provides, together with the
mass—velocity correction in eq S8, the dominant relativistic
correction to the total energies of light systems—it is almost as
large as the mass—velocity correction but positive, increasing the
total energy. The negative two-electron Darwm term is much less
important (by about 2 orders of magnitude)** since the repulsion
between the electrons reduces their probability of occupying the
same point in space. There is no nuclear—nuclear Darwin
correction in eq 59 since the nuclei are treated as stationary in
the Born—Oppenheimer approximation.

As noted in section 2.2.1, the nuclear point-charge model is not
always adequate. The finite size and nonspherical charge distribu-
tions of the nuclei may then be corrected for by using the second last
and last operators in eq 59, respectively. In these operators, Ri
represents the nuclear extent as defined in eq 51 and Oy is the
nuclear quadrupole moment, interacting with the field gradient at the
nucleus. Nonspherical nuclear charge dlStI'lbuthIlS are observed in
nuclear quadrupole resonance (NQR) studies™ as well as hyperfine
interactions in high-resolution rotational spectra’ They are also
important in magnetic resonance studies since the quadrupole
moment is aligned with the nuclear magnetic moment, thereby
providing a coupling between nuclear spins and electronic field
gradients, thus providing an important relaxation pathway in nuclear
magnetic resonance (NMR) spectroscopy.®

2.2.5. External Electric-Field Interactions. The interac-
tions of a molecule with an externally applied scalar potential
¢(r) are in the Breit—Pauli Hamiltonian in eq 57 represented by
the operator

2

ef— - 24) + ZZKq)K Z(V E) (60)

According to Coulomb’s law in eq 3, the Darwin correction
vanishes in vacuum. Since macroscopically applied fields are
fairly uniform on a molecular scale, it is expedient to expand the
Hamiltonian in eq 60 in multipoles

1

He = Qtot¢0 — Mo Eo — Etr QtVo + - (61>
where gy, is the total charge of the molecule while g, and Q.
are the dipole and second moments, respectively

Pt o = — X Tia + Y, ZxRia (62)
i K

Qiot, ap = — Z Tiatip + Z ZgRiaRip (63)
i K

Since the field gradient generated by an external source is
traceless, the traceless quadrupole moment

3 1
0= EQ - E(tf Q)L; (64)

is often used instead of Q. In the multipole expansion of
eq 61, the electric potential ¢, the electric field Ey, and the
electric field gradient V, are evaluated at the origin of the
expansion. Higher order multipoles are rarely needed to describe
macroscopic fields but are needed for the highly nonuniform
fields generated by neighboring molecular systems, in particular,
for calculation of weak intermolecular interactions and long-
range Coulomb interactions.”” The external scalar potential ¢
also contributes to the spin—orbit interaction, as discussed in
section 2.2.7.

2.2.6. Zeeman Interactions. The Zeeman term in the
Breit—Pauli Hamiltonian in eq 57 describes the paramagnetic
interactions of the molecule with an externally applied magnetic
field B

= -5 % (-l

—s + = as,V) B ZMK

(65)

Since the nuclear moments are on the order of 10 > in atomic
units, the nuclear part is much smaller than the electronic part but
it is important in NMR spectroscopy, where it determines the
position of the (unshielded) resonance lines in the spectra. We
also note that, in the Breit—Pauli Hamiltonian in eq 57, there is,
apart from the paramagnetic interactions in H, discussed here, a
corresponding set of diamagnetic (quadratic) interactions in Hg;,
discussed later.

There are three distinct contributions to the electronic part of
H, in eq 65, the first of which represents the Zeeman inter-
action with the magnetic moment generated by the orbital
angular momentum of the electrons relative to the gauge origin
Lio = 1,0 X p;. The second and third electronic contributions to
H, constitute the Zeeman interaction with the spin of the
electrons. In addition to a dominant nonrelativistic contribution
from eq 38, there is a small relativistic correction from eq 39,
which contributes to the g shift of electron paramagnetic
resonance (EPR) spectroscopy. Note that because of its depen-
dence on the gauge origin O the Zeeman operator is not uniquely
defined.

The expectation value of an imaginary Hermitian operator €2
vanishes for orbitally nondegenerate states, since their wave
function may be chosen real

(real|Q|real) = (real|Q\real>* = (real|Q"|real)
= — (real|Q|real) (66)

For such states, the expectation value of Lo = Yil,o therefore
vanishes and the orbital angular momentum is said to be
quenched. Likewise, the expectation value of any triplet operator
such as the spin angular momentum operator S = ¥s; vanishes for
singlet states. Closed-shell molecules therefore do not interact
with external magnetic fields to first order, but the second-order
diamagnetic interactions never vanish.

2.2.7. Spin—Orbit Interactions. Collecting those terms in
the Breit—Pauli Hamiltonian of eq 57 that, to second order in the
fine-structure constant, couple the motion of the electrons to
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particle spins (magnetic moments), we obtain

ZK S;* 1K

_ 22 j
® Tk 19&, ij i#] ij

+(12 ZTI + Tzsi.(EiXPi_
iK iK

i

p; X E)
(67)

The spin—orbit interaction arises from the coupling of electron
spin to the magnetic fields induced by other charges in relative
motion. In the Born—Oppenheimer approximation, all particle
motion is with respect to the nuclear framework. The first term in
eq 67 is the nuclear spin—orbit operator arising from the motion
of the electrons relative to the nuclei. It should be emphasized
that the angular momentum operator L accordingly represents
the relative motion of the electron and nucleus. The second term
above is the spin—same-orbit operator arising from the orbital
motion of the reference electron with respect to the nuclear
frame, whereas the third term is the spin—other-orbit operator,
which arises from the relative motion of the other electron with
the respect to the nuclear frame.

Because of their triplet nature, the spin—orbit operators do not
contribute to the total energy of closed-shell systems to order . On
the other hand, they are responsible for the splitting of otherwise
degenerate states in open-shell systems, producing, for example, the
fine structure of atomic spectra. The spin—orbit operators are also
important in providing a mechanism for intersystem crossings and
phosphorescence, that is, spin-forbidden radiationless and radiative
transitions between molecular electronic energy levels. Finally, in
magnetic-resonance spectroscopies, the spin—orbit operators con-
tribute to second order to g values and hyperfine coupling constants
and to zero-field splittings in EPR and often provide the leading order
relativistic corrections to heavy-atom effects on the shielding con-
stants of light nuclei.

The fourth operator in eq 67, which arises from substitution of
A, of eq48into the Y;A;- p; part of eq 38, provides a mechanism
for coupling the nuclear magnetic moments M to the orbital
motion of the electrons. It is known as the orbital hyperfine
operator or the paramagnetic spin—orbit operator; it is similar to
the spin—other-orbit operator, which likewise couples the spin
and orbital motion of different particles. Like all hyperfine
operators, the orbital hyperfine interaction is weak (10~ au).
It contributes to nuclear shielding constants and indirect nuclear
spin—spin coupling constants in NMR and in second order to
hyperfine coupling constants in EPR. The last term in eq 67
depends on the external electric field and is unimportant for free
molecules.

2.2.8. Spin—Spin Interactions. Collecting all terms in the
Breit—Pauli operator of eq 57 that involve interactions between
the spins (magnetic moments) of two particles, we obtain

2 . — 38 eril e
a risis; — 38;°IyL;"s; 81
_ ij U yty o)
Hss - 7 E r§ - 76(1‘1;)81 S]
i#j ij

— 6(1’11()81 MK
ik

2
) Z rixSiMg — 3s;-rgrik "M 87
, 3

+a_2 5 RZ (Mg M) — 3(MK-RKL)(RKL -My)
2

N
KZL Ry

consisting of classical dipolar and Fermi-contact interaction
terms. Together with the Darwin operator of eq 59, the two-
electron Fermi-contact operator in the first line of eq 68 provides
the largest two-electron relativistic correction to the energy of
light systems. The two-electron spin—spin operator also con-
tributes to the zero-field splitting observable in EPR spectrosco-
py of triplet species (biradicals)*®** discussed in section 5.3.2.
Whereas the two-electron spin—spin interaction dominates the
zero-field splittings in organic biradicals, the spin—orbit interac-
tion dominates the splittings in systems containing heavier
elements, eq 612.

The hyperfine interaction operator in the second line of eq 68
couples the electronic and nuclear spins and arises from sub-
stitution of B, of eq 50 into X;B;-s; of eq 38. Together with the
orbital hyperfine operator in eq 67 it contributes to the indirect
coupling of nuclear spins observed in NMR for liquids, as
discussed in section 5.2. The isotropic Fermi-contact term is
particularly important, coupling the rapidly tumbling nuclear
moments in high-resolution NMR. Finally, the dipolar nuclear
spin—spin operator in the last line of eq 68 is responsible for
important direct coupling of nuclear spins observed in NMR in
solids but makes no contribution to the isotropic coupling in
liquids. We omitted the nuclear—nuclear contact term, which
does not contribute for stationary nuclei.

2.2.9. Orbit—Orbit Interactions. The two-electron orbit—
orbit operator in eq 57 arises from eq 44 and represents a rela-
tivistic correction to the two-electron Coulomb interaction due
to the relative motion of the electrons

i t]P} + P1 r’]rlj P]

we-23

i#j 'J

(69)

The orbit—orbit correction is smaller than the two-electron
Darwin and spin—spin corrections but becomes more important
in heavier atoms.>* Moreover, the orbit—orbit interaction does
not split levels and does not cause transitions. It is therefore
usually of less interest than the two-electron spin—orbit and
spin—spin interactions.

2.2.10. Diamagnetic Interactions. The diamagnetic inter-
actions in the Breit—Pauli Hamiltonian of eq 57 are terms of
order a* or smaller (keeping in mind that the external magnetic
induction is typically of order ), arising from expansion of the
vector potential in the kinetic-momentum operators of eq 37.
Although the Breit—Pauli Hamiltonian as such is correct only to
order a?, the small diamagnetic interactions are included in our
discussion since they are important for many spectroscopic
parameters

Hgg < magnetizability
+Hpy — nuclear shielding (NMR)
+Hwm — indirect nuclear spin—spin coupling (NMR)
~+Hymvps < electronic g factor shift (EPR)
+Hps — electronic g factor shift (EPR)
+ Hys < hyperfine coupling (EPR)

Hgo =

(70)

The first three operators in Hg;, arise from expansion of A%)2
with the vector potential given by eq 46

Hy — é Y, (B x ro)’ (71)
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o? B X r10) (Mg X 1;

Hyy == ¥ (B x tio) _5 kX fic) (72)
2 K ik
a4 (MK X 1‘,'1()‘(ML X riL)

HMM - — 2 3 3 (73)
2 K TiKTiL

They contribute diamagnetically to the magnetizability tensor, to
the nuclear shielding tensor, and to the indirect nuclear spin—
spin tensor, respectively. The fourth operator in Hgj, is the spin-
dependent part of the mass—velocity operator in eq 39
a2
Hyves = — ” Z (75,-2]3:' s, + B;- Siﬂ,-z) (74)
Finally, the last two operators in Hg;, arise from expansion of eq 46 in

the spin—orbit and spin—other-orbit operators in eqs 41 and 42 with
a simultaneous substitution of the nuclear electric field in eq 49

az ZK(B X l'io) . (Si X riK)

Hp, = —
Bs 4 % V?K
o? B Xrio):(s; + 2s;) Xr;
¢ Z ( 10) ( : J) U (75)
4 i T

a4 ZK(ML X l'iL) . (Si X riK)
2% VSJ?L
at (Mg X i)« (s; + 2s;) X 1
=y 7 (76)

25 4 it

These operators couple the spin of the electron to the external
magnetic field and the nuclear magnetic moments, respectively,
contributing in second order to the g shifts and nuclear hyperfine
coupling constants in EPR spectroscopy ™ as well as often bein‘g the
leading order relativistic correction in heavy-element shieldings.”' ~*

2.3. Second Quantization

We introduce in this subsection second quantization with
emphasis on the representation of the molecular electronic
Breit—Pauli operator in this formalism. For a more extensive
treatment of second quantization in quantum chemistry, see the
monograph by Helgaker, Olsen, and Jorgensen.>

2.3.1. Second Quantization in the Spin—Orbital Basis.
In second quantization, the elementary operators are the creation
and annihilation operators a} and ap, respectively. The annihila-
tion operator ap annihilates an electron in spin orbital p,
whereas the creation operator aj creates an electron in the same
spin orbital. In a basis of orthonormal spin orbitals, these
operators satisfy the anticommutation relations

lap, ap], =0 (77)
[ap, ag], =0 (78)
[a;, aqh = CSpQ (79)

From these simple relations all other algebraic properties of the
second-quantization formalism follow. In a nonorthonormal
basis of spin orbitals, the anticommutation relations would be
the same except for the last relation, which becomes

[ap, aq], = Wolvp (80)

where (1)o|1p) is the overlap between the two spin orbitals.

In the Fock space generated by an orthonormal basis of M spin
orbitals ¥/, the basis vectors are the occupation-number vectors
|k), where kp is the occupation number of spin orbital P in |k).
The simplest such state is the vacuum state |vac), which contains
no electrons, that is, all occupation numbers kp are zero. Any
occupation-number vector can be generated from the vacuum
state by application of a string of creation operators to the vacuum
state

Ky = [T (a})"]vac (s1)

whereas application of an annihilation operator to the vacuum state

yields
ap|vac) = 0 (82)

A general N-electron state is represented as a linear combination of
such occupation-number vectors, each containing N electrons. By
applying strings of creation and annihilation operators to a given
N-electron state, we generate new states, possibly containing more
or fewer particles, the anticommutation relations in eqs 77—79 ensur-
ing that all such manipulations are consistent with the Pauli
principle.

An important class of operators is the number-conserving
operators, containing the same number of creation and annihilation
operators, in particular, the single- and double-excitation operators
ab ag and ab aaaR as, in terms of which we may, for example,
construct the nonrelativistic field-free Hamiltonian operator

. 1
H = Z han;uQ + E Z gpQRga;a};agaQ + hpuc (83)
PQ PQRS

where

hm/%®<;WZf%MWX (34

I

//TIJE(XIWE (x2)q (x1)Ps(x2)

dx; dx, (85)
T2

8PQRS —

1 717
hnuc =3 =7

(86)
27 Ry

The form of this second-quantization operator may be interpreted
in the following way: When applied to an electronic state, the
Hamiltonian produces a linear combination of the original state with
states generated by single- and double-electron excitations from this
state; with each such excitation there is an associated probability
amplitude hpq and gpors calculated from spin orbitals according to
eqs 84 and 85, respectively. The expectation value with respect to
the state |0) is given by

1
(0|H|0) = Z Dpohpq + 2 Z dporsgrqrs + hue  (87)
PQ PQRS
where the one- and two-electron density-matrix elements
Dpq = (0lapaq|0) (88)

dPQRS = (0|a}a£asaQ|O) (89)
are expectation values of the excitation operators.
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2.3.2.Second Quantization in the Orbital Basis. In eq 87,
the energy is calculated in a basis of spin orbitals. Often it is more
convenient to work in a basis of orthonormal orbitals, typically
molecular orbitals (MOs) expanded in AOs. A general spin
orbital may be written as a linear combination of two orbitals
multiplied by spin functions

Wp(r, my) = ¢L(r)alms) + ¢h(0)B(ms)

where the spin functions a and f3 are eigenfunctions of the total-
and projected-spin angular-momentum operators

(90)

S*a(mg) =

(91)

Za(ms), Sua(my) = %a(ms)

$*p(my) (92)

3 1
Zﬁ(mS)) SZﬁ(mS) = _EB(mS)

and where m, = £1/2 is a discrete spin coordinate such that
a(1/2) = B(=1/2) = 1 and a(—1/2) = B(1/2) = 0.3° In
nonrelativistic theory, it is common to use spin orbitals in the
more restricted form

Wpa(r) ms) = ¢p(r)0(ms)

so that a given spin orbital consists of an orbital multiplied by a
spin function. Spin orbitals with different spins are orthogonal.

In the orbital basis the elementary creation and annihilation
operators are a,, and d,, from which all other operators can be
constructed. It is then convenient to classify all second quantiza-
tion operators according to their spin properties. A spin-tensor
operator of integral or half-integral rank S is a set of 2§ + 1
operators T, where M runs from —S to S in unit increments

and which fulfill the relations

(93)

[Sp, TSM] = \/S(S + 1) —M(M + TS M= (94)

[S., TS M] = MTS ™ (95)
where we assume that T5**' = T5757! = 0. A tensor operator
working on the vacuum state generates a set of spin eigenfunc-
tions with total and projected spins S and M (provided it does
not annihilate the vacuum state). Two examples of doublet
spin-tensor operators {T"/>"/%T'>7/2} are the creation
operators {a}4,a55} and the annihilation operators {—a,s,a,q}-
Important singlet and triplet spin-tensor operators {T”°} and
{T", T, TV} are the singlet single-excitation operators

1
82:10 — E(a;aaqa -+ a;ﬁaqﬁ) (96)
and the triplet single-excitation operators
L1
Ty = ~ adep 97)
;:1 0 _ 75 (a;aaqa — a;ﬁaqﬂ) (98)
T = G (99)

From the triplet spin-tensor operators we may, for example,
construct the spin-shift and spin-projection operators

S, = =%, Ty, S_ =3,Ty ', and S, = (1/2)"/?%,Tyy. For the

553

representation of the electronic Hamiltonian, we shall use the
singlet excitation operators in the form

0,0 _
E, = \/iqu = a;aaqa + a;ﬁaqﬁ (100)
and also the triplet operators in the Cartesian form
Loy +
- E(“pa“qﬁ + a,5000)
Pq 1 . N
Ty = | Thy | = Z(apa“‘i/’ - apﬁa‘l“)
74
T —(at agq —a'za.8)
g\ paad pB%aP
1 1 0
2 2 Th1
1 1 1P‘17 :
1 T, °
0 0 — v

V2

In terms of these excitation operators the second-quantization
representation of the Breit—Pauli Hamiltonian of eqs 38—44

becomes
1
HNR e Z <p’£_7'[2 _¢‘q>qu + Z B.qu
rq 7
l —
+E Z <p1‘|7'121 ‘qstpqErs - (5qrEps) (102)
quS
MV aZ 4 P (Zz )
HY = == ¥l + By~ X (¢l 9B Ty
Pq rq
(103)
DW a
HY = 3 l(V-B)lgE,
Pq
o’
= X rlo(ra) a)(BpgBrs — Ogrps)  (104)

pqrs

2
a
HYO = ”y pz (p|E x & — 7 X E|g)- Ty
q

a* -
+ 5 X (Vi) X Talas) (TpgEs = 0y T)

quS
(108)
H%C = —a—22< r|(Vir') X 20gs)+ (TpgErs — 04 Tps)
= > P 17, 2198 pgLors qr L ps
quS
(106)
SS o? — ey
HY = ) Z Z <P"|[(I3V§ - Vlv’lr')rlll}ﬂv‘q‘s)(é"T;qTrs - (3#1,(3,1,15},3)
pars v

(107)
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H®® = —a—ZZ( \ﬂT[(I V2 —
= Prifty 13V
quS

Vlvf)rll}”l | q5>(quErs - 6qrEps)

(108)

For a discussion of these operators and their integral evaluation,
see Coriani et al.**
2.4. Perturbation-Dependent Basis Sets

In second quantization, the electronic Hamiltonian is ex-
pressed in terms of one- and two-electron integrals over MOs
expanded in AOs, see eqs 102—108. In calculations of molecular
properties, the use of this Hamiltonian presents a complication
not encountered in energy calculations, namely, that the AOs
employed often depend explicitly on the external parameters
representing the perturbations. In this section we discuss the
second-quantization Hamiltonian with emphasis on the conse-
quences of such perturbation-dependent basis sets.

2.4.1. Perturbation-Dependent Atomic Orbitals. In cal-
culations of molecular properties the AOs often depend explicitly
on the external parameters that describe the system. Here, the
AOs are taken to be solid-harmonic Gaussian functions with
angular-momentum quantum numbers [ and m and exponent a
fixed to an atomic position K and equipped with a complex phase
factor that depends on the external magnetic field B and the
gauge origin O** in the manner

— ¢i(1/2)Bx0k TS (rK)e*“ﬁi (109)

where Ox = O — K, rg = r — K, and Sy,,,(r) is a solid-harmonic
function. By fixing the AOs to the nuclei we obtain a balanced
treatment of the electronic system at different molecular geo-
metries, introducing into the AOs the observed strong coupling
of the atomic charge distributions to the nuclei. By including a
field-dependent phase factor in the AOs we ensure that our
results become independent of the gauge origin O and further-
more improve basis-set convergence by introducing into the AOs
the correct first-order response of the electrons to an applied
external magnetic field, as discussed in section 2.4.5. We note
here that AOs with an explicit dependence on the external
electric field have also been proposed**® but are much less
widespread, as the added computational complexity does not
compensate for the rather moderate improvements in basis-set
convergence observed.

Use of perturbation-dependent AOs is essential for reducing
the AO basis sets to a manageable size while maintaining high
accuracy in the calculations. However, their use also introduces
certain complications, in particular, in the evaluation of molec-
ular integrals. Moreover, since the AOs change with the external
parameters &, we are in fact at each value of ¢ faced with a
different second-quantization representation H(¢) of the
Hamiltonian. To calculate molecular properties with such basis
sets we must establish a connection between Hamiltonians at
different values of &.*”

2.4.2. Orbital Connections. Consider the second-quantiza-
tion representation of an electronic Hamiltonian in a basis of
perturbation-dependent AOs y,,(r;e), where € represents the
external parameters (e.g., the molecular geometry or the mag-
netic field strength) upon which the AOs in eq 109 depend. For
the unperturbed system, for which we conventionally set € = 0,
we calculate a set of orthonormal MOs

Z Mu r;0) (110)

le(r; a, K, B, 0)

from which the Hamiltonian operator is constructed in the usual
manner

) = 2 hpq(O)E
rq

+ % Y, 0rs(0)[Epg(0)Es(0) — 0,4E,(0)]  (111)

pqrs

The one- and two-electron integrals are obtained by integration
over the orthonormal MOs in eq 110

hyq(0) = (¢, (0)[h1(0)]9,(0)) (112)

8ars(0) = €9,(0)¢,(0)[r;'[¢,(0)¢,(0)) (113)
whereas the excitation operators

Epg(0) = a,(0)aga(0) + a5(0)ags(0) (114)

are constructed in the usual manner from the creation and
annihilation operators that obey the anticommutation relations
in eqs 77—79.

Let us now consider a perturbed system with & # 0. For this
system we would like to set up a second-quantization representa-
tion that connects smoothly with the representation of the
unperturbed system.***” We define a set of nonorthogonal
unmodified MOs (UMOs) by retaining the MO coefficients of
the unperturbed system

2 #xﬂ r;€) (115)

This UMO basis connects smoothly with the unperturbed basis
of eq 110 at &€ = 0 but is nonorthonormal at & # 0 since the
overlap integrals of the AOs depend on the perturbation

Spa(€) = (9, (e)|9,(e))
= Z O CO Gt () (6))F Opg (116)

We therefore cannot represent our Hamiltonian in this basis at
& # 0 without affecting the algebra of the creation and annihila-
tion operators, having to replace the simple anticommutation
relation in eq 79 with the more complicated relation in eq 80. To
avoid this complication we construct a set of orthonormalized
MOs (OMOs) by an orthonormalization of the UMOs

) = Y ¢, (e)Ty(e) (117)

47—49

where T(¢) is the connection matrix, taken to satisfy the relation

T'(¢)S(e)T(e) =1 (118)

The connection matrix can be chosen in infinitely many ways, each of
which establishes a particular orbital connection between orthonor-
malized MOs at different &. For example, by decomposing T into
its real and imaginary parts T = T + iT' with TR 0 for p > g and
T}[,q =0 for p = g we arrive at the Gram— Schrmdt connection.
A physically better motivated connection is obtained by requiring
the OMOs &,(r;e) to resemble as closely as possible some target
functions f,(r;e). Introducing the overlap matrix between the UMOs
and the target functions

Wig(e) = {fp(€)]0,(€)) (119)
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it can be shown that the connection matrix is given by
W (WS (oW ()]

Requiring the OMOs to resemble the perturbed UMOs by setting
fo(x;€) = ,(1;6)," we obtain the symmetric orthonormalization®'

T(e) = §1/%(e)

T(e) (120)

(121)

Alternatively, we may require the OMOs to resemble the unper-
turbed UMOs by setting f,(1;e) = ¢,(r;0), yielding instead the
natural connection.”” The natural connection ensures that the
OMOs in terms of which the Hamiltonian is constructed change
as little as possible with &, improving numerical stability.>

In the OMO basis of eq 117 we may now construct a
Hamiltonian operator that is defined for all € in the usual manner

= X by &)+ ngqrs )[Ejy (€)Ers (&)
rq P‘I'S
— (S;gEf,g(S)] (122)

where the OMO integrals are denoted by the tilde and may be
expanded in UMO integrals

:Zm@mw%@
—Zm b T (e
Gai(e) = X Gars(&) Trp(&) T3, () T (€) T ()
= :Z:<¢ (&)9,()[r! |9, (2),(e))Tpp(e) T, (€) T (&) T ()
(124)

The excitation operators are constructed in the usual manner
Epy(e) = aga(e)aqa(e) + a;ﬁ(e)aéﬂ(s) (125)

from the creation and annihilation operators that obey the
anticommutation relations in eqs 77—79. Above, we restricted
ourselves to singlet perturbations; the corresponding expressions
for triplet perturbations are obtained by a simple generalization
of the scheme for singlet perturbations.

2.4.3. Perturbation Dependence of the Creation and
Annihilation Operators. The dependence of the creation and
annihilation operators ap(&) and ap(€) on ¢ in eq 125 arises from
the dependence of the OMOs in eq 117 on &. However, for the
purpose of calculating derivatives of electronic energies we may
treat these operators as being independent of & because the
creation and annihilation operators always appear in transition
expectation values such as

(K|a}aQ |L> = <vac|aKl ag, ---axy a;aQazN ...azz azl |vac)
(126)

which, by means of the anticommutation relations in eqs 77—79,
may be reduced to sums of products of Kronecker deltas. Since
these are independent of &€ we may ignore the perturbation
dependence of the creation and annihilation operators altogether

- L st

l <.
q + E;gﬁ;g(@ (E qErS — (3;§Ei,§)
pqu

(127)

555

If instead the Hamiltonian had been constructed from non-
orthonormal spin orbitals, the vacuum expectation values would
reduce to sums of products of perturbation-dependent overlap
integrals S,,,(&), making it necessary to account for the perturba-
tion dependence of the creation and annihilation operators in
calculation of energies and other properties of the system.

The above arguments are no longer valid when we con51der,
for example, nonadiabatic coupling matrix elements,”* the in-
tensities of electronic circular dichroism (ECD),** and vibra-
tional circular dichroism (VCD).*>*® We are then interested in
calculating elements of the form (K|d/de|L), where (K| and |L)
are different electronic states. The creation and annihilation
operators in the bra and ket states are no longer the same, and
transition densities cannot be reduced to simple Kronecker
deltas. In such calculations the perturbation dependence of the
excitation operators cannot be neglected. In these cases, the
natural connection provides a particularly attractive approach for
calculating the relevant matrix elements.*”**>

2.4.4. One-Index Transformations. For calculation of
molecular properties, we need to expand the OMO integrals in
eqs 123 and 124 in orders of the perturbation. To express these
expansions in a compact form we introduce the integrals
(restricting ourselves to the one-electron case and omitting the
argument ¢ for ease of presentation)

hpg(t) = ¥ hilexp(tIn T)], [exp(t In T')]

pa (128)

which include the UMO integrals (¢ = 0) and the OMO integrals
(t =1) as special cases. Expanding around ¢ = 0 and setting t = 1
we obtain an expansion of the OMO integrals in the UMO
integrals

- 1
h=h+ {InT, h} + E{ln T,InT, h} + ... (129)

where we introduced a brace notation for one-index transforma-
tions

{M, b}, = Y (Myohog + M, hy,) (130)

with the following notation for symmetrized multiple one-index
transformations

(M, My, B} = (M, (M, B} o+ (M, My, B}

(131)

An order-by-order expansion in the perturbation now yields to
second order*®*7 %

h(e) = b + hWe + %h%2 + .. (132)
with the expansion coefficients
h® = n (133)
B — hO 4 {Tu), h<°>} (134)
ho — h® 4 %{T@) _ g, h(o)}
n {Tm, h<1>} n {Tm, T, h(o)} (135)
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where we used the expansion
1 1
InT = (T—I)—E(T—I)Z + 5(T—I)3—... (136)

to re-express In T in terms of the derivatives of T, noting that T(0) =
L The advantage of the expressions in eqs 133—13S over those
obtained by a straightforward expansion of the OMO integrals in
eq 123 is that they maintain the symmetry of the integrals upon
differentiation. The two-electron integrals are obtained in the same
manner using the one-index transformations

{MJ g}pqrs = Z (MPOquYS +M;ggp0f5 Jr MYOquOS + M:;gpqro)

(137)

as a generalization of the one-index transformations for one-electron
integrals in eq 130. Finally, we note that the lowest order connection
matrices are given by’

1
_ES(I) ,  Symmetric connection

T(l) _ (138)

—w, natural connection

1 3

_ES(Z) + Zs(l)sm, symmetric connection
™ = Lo Lwer _woe)

2 2

+2o2wOwO 4 wtw), natural connection
(139)
where

Win(e) = (6, (0)10,(6)) (140)

in the symmetric and natural connections.

2.4.5. London Atomic Orbitals. We recall from section
2.1.4 that, in calculations involving an externally applied uniform
magnetic field B, the field is represented by a vector potential
Ao(r) that vanishes at the gauge origin O

B = V x Ao(r), Ao(r) = %B % (r— 0) (141)

The representation of the magnetic field is not unique, being
dependent on our choice of gauge origin O. The translation of
the gauge origin from O to K represents a gauge transformation
of eqs 9 and 10

Ak(r) = Ao(r) = Ao(K) = Ao(r) + Vf(r) (142)

with the gauge function

f(r) = —Ao(K)r (143)
In exact calculations, such gauge transformations do not affect the
value of the calculated observables. To see this invariance we note that

a general gauge transformation, eqs 9 and 10, with gauge function f
represents a unitary transformation of the operator H — id;

H —id, = e /0(H —i3,)e ) (144)

In order for the Schrodinger equation to still be satisfied
(H' —i0,)W'(r) < (H —id;)¥(r) (145)

the new wave function must be related to the old one by a
compensating unitary transformation

W (r) = e /OW(r) (146)

No observable properties such as the electron density are then
affected by the transformation

! ! * !

p(r)
=W (1)¥(r) = p(r) (147)

In exact calculations the wave function has the ability to perform the
transformation in eq 146, leaving all observables unaffected. In
particular, for the gauge transformation in eq 143 the exact wave
function transforms as

WR(r) = ol rwEd() (148)

giving gauge-invariant results. By contrast, approximate wave func-
tions are in general unable to perform this transformation

W 1) o (149)

As aresult, different gauge origins may give different results. We note
that attaching an explicit phase factor to the approximate wave
function

1p;i\?prox (I‘) déf iAo (K) .rlpgprox (I’) (150)

does not solve this problem; it merely produces the same result as
with the gauge origin at 0. However, no natural, best gauge origin
can usually be identified (except for atoms). In any case, we might as
well have carried out the calculation with the origin at O.

By contrast, when applied to individual AOs, this approach
becomes useful, as can be seen by first assuming that we have
AOs positioned at K with the properties®

K, K __ K
Lz wlm - mﬂplm’

L= —i(r—K)xV (151)

Hoyys, = Eoyys,

Typical examples of such AOs are traditional field-independent
spherical-harmonic Gaussians. With the gauge origin at K and
vector potential Ag(r) these AOs are correct to first order in B

H (B)yy,

1
{Ho + EBLf + o(BZ)}w}fn

= {Eo + %sz + O(BZ)]w}fn (152)

where we omitted the Zeeman spin contribution BS,. On the
other hand, with the gauge origin at O # K and vector potential
Ao(r) the AOs at K are correct only to zero order in B

Ho(B)yy = [HO + %BLZO + O(BZ)} T
£ [Eo + %mlB + o(Bz)]zp}; (153)

dx.doi.org/10.1021/cr2002239 |Chem. Rev. 2012, 112, 543-631



Chemical Reviews

Clearly, standard AOs positioned at K are biased toward the
gauge origin at K in the sense that they give a better description of
the electronic system with this origin than with all other gauge
origins. Therefore, by attaching to each AO a phase factor that
represents the transformation of the gauge origin from the global
origin O to the AO center K

X}fn — eiAK(O)'er

i(1/2)Bx(0 = K).r,, K
— - :e(/) x( )fwlm (154)
we obtain a basis set where the AOs are correct to first order in
the perturbation®® for any gauge origin

1
Ho(B), — [y + 3810 + 08|28

1
= {Eo + omB + O(BZ)}x}fn (155)

The calculations become gauge-origin independent, and uniform
(good) quality follows. These are the London orbitals
(1937),44’ 162 also known as GIAOs (gauge-origin independent
AOs or gauge-origin including AOs), widely used in molecular
calculations involving an external magnetic field.

3. RESPONSE THEORY FOR EXACT STATES

In the present section we develop molecular response theory
for exact wave functions, in particular, we derive response
functions and study their properties. In section 4, the results
obtained here for exact wave functions will be used to develop
response theory for approximate electronic-structure models.

We begin our development in section 3.1 by studying various
forms of the time-dependent electronic Schrodinger equation
and introducing the time-dependent quasi-energy, which is a
generalization of the energy of standard time-independent
perturbation theory. Two formulations for the quasi-energy are
developed: a formulation analogous to the standard Hermitian
expectation value of the energy and a formulation based on a
non-Hermitian Lagrangian. For periodic Hamiltonians it is
shown that the time-dependent Schrodinger equation may be
written as a variation principle for the time-averaged quasi-
energy. In section 3.2, the time-dependent wave function is
expanded in orders of the perturbation and expressions are
developed for the wave function corrections of different orders.
This development is followed in section 3.3 by perturbation
expansions of the time-dependent and time-averaged quasi-
energy in the Hermitian form. In section 3.4, the response
functions associated with an observable are identified from
expansion of the expectation value of the corresponding
operator. It is shown how the response functions may be
identified with terms in the perturbation expansion of the
quasi-energy. Using the Hermitian formulation of the quasi-
energy, explicit expressions for the lowest order response
functions are given; in section 3.5, alternative expressions for
the response functions are given, based on the Lagrangian
formulation of the quasi-energy.

In developing these Hermitian and Lagrangian expressions for
the response functions, a generalization of Wigner’s 21 + 1 rule to
time-dependent theory is repeatedly invoked; this generalization
is discussed in section 3.6. Finally, in section 3.7, a phenomen-
ological treatment is given to describe the broadening of
absorption spectra arising from the finite lifetimes of excited
states and from interactions with other molecules.

3.1. Quasi-Energy Formulation

A convenient framework for molecular response theory is
the quasi-energy formulation,®> % which provides a uniform
treatment of periodic time-dependent perturbations and time-
independent perturbations. In the present subsection we intro-
duce the time-dependent and time-averaged quasi-energies and
develop the variation principles for these quantities, laying the
foundation for our development of response functions in later
subsections. Importantly, our treatment is not restricted to the
quasi-energy calculated as an expectation value from a normal-
ized wave function; we also consider the quasi-energy calculated
by projection from an intermediately normalized wave function.
The general framework developed here is therefore equally
applicable to variational model theories such as MCSCF theory
and to nonvariational model theories such as coupled-cluster
theory, both of which are treated in section 4.

3.1.1. Time-Dependent Quasi-Energy and Its Variation
Principle. The time development of the electronic wave function
|0) is determined by the time-dependent Schrédinger equation

H|0) = i8,]0) (156)

where the Hermitian Hamiltonian consists of a dominant time-
independent part Hy and a time-dependent perturbation V(%)

H=H + V() (157)

From the Hermiticity of the Hamiltonian it follows from eq 156 that
the norm (0|0) is independent of time; here, we assume normal-
ization to unity

(0o = 1 (158)

In the following it will be convenient to separate the wave function
into a product of a phase factor and a regular wave function |0>63

0y = e "1)|0) (159)

where the phase F(t) is a real-valued function that depends only on
time. The regular wave function |6) is taken to be a normalized wave
function whose overlap with a chosen time-independent normalized
reference state |R) is real and positive: (R| 0) > 0. Neither the
reference state |R) nor the states i) are required to be eigenfunctions
of Hy. Introducing an orthonormal basis { [R),|i}}, we may write the
regular wave function as

IR) + Zci\i>

ll + Z‘Ci|2

The restriction that the overlap (R|6> is nonzero means that the
above ansatz is not fully general. However, this restriction does not
pose any problems in the current context, where we are only
interested in perturbation expansions rather than in the explicit
time development for an arbitrary time-dependent perturbation.
We note that the separation in eq 159 is not unique, depending on
our choice of regular wave function and phase factor. Consider an
alternative separation, |0) = e T |0"), different from that in eq 159.
Comparing with eq 159, we find that |0) and |0') are related by a
time-dependent phase factor

|6/> _ ei(F’(t) 7F(t))|6> (161)

We shall later see that this nonuniqueness does not affect the central
quantity of response theory: the time-averaged quasi-energy.

|0y = (160)
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Let us now consider the Schrodinger equation for the phase-
separated wave function. By substituting eq 159 into eq 156 we
obtain the time-dependent Schrddinger equation for |0) and F(t)

(H—i0, — F(£))[0) = 0 (162)

Introducing in eq 162 the projection operator P, for the space
orthogonal to x

(163)

we arrive at the time-dependent Schrodinger equation for the
regular wave function

Py(H —id;)[0y = 0 (164)

If we instead project eq 162 onto |6>, we obtain an equation for
the phase factor

Q(t) = E(t)

By first solving eq 164 for the regular wave function and subse-
quently determining the phase factor by integrating eq 165 we obtain
the full solution to the Schrodinger equation in eq 156. In the time-
independent case, with V(t) = 0 and H0|6> = E0|6>, we obtain Q(t) =
E, and hence F(t) = Eyt + k. For this reason Q(t) is known as the
time-dependent quasi-energy. To distinguish the expression for the
time-dependent quasi-energy in eq 165 from other expressions
derived later, this form is termed the Hermitian form of the time-
dependent quasi-energy. The time-dependent quasi-energy is a real
quantity, being the derivative of the real function F(t); alternatively,
the real valuedness of Q(#) follows explicitly from the Hermiticity of
H and the constant norm of |6) in eq 165. The quasi-energy is not a
unique quantity; it depends on the choice of the regular wave
function and phase factor: Q(t) = E(t). However, in section 3.1.2 it is
demonstrated that, for periodic perturbations, the time-averaged
quasi-energy is uniquely defined.

For the development of response theory we need to characterize
the quasi-energy and regular wave function in terms of a vanatlon
principle. From eq 162 we obtain the Frenkel variation principle®” for
an arbitrary variation |00} in the regular wave function

Q(1[0) =0 (166)

= (0|H — id,|0) (165)

(O0|H — i, —

Taking the complex conjugate of eq 166 and adding it to the same
equation we obtain

O(0|H — id,]0) + i%{()mé) =0 (167)

where we used 0(0|Q(£)|0) = Q(£)3(0|0) = 0, which follows from the
fixed normalization of the regular wave function. To simplify eq 167 it
is useful to separate a general variation |00} into a component |00 D)
orthogonal to |0) and a component it|0) parallel to |0)

|00) = [00™) + ia|0) (168)

From the normalization of the regular wave function it follows that the
amplitude a in eq 168 is real. Inserting eq 168 into eq 167, we obtain
the variation principle
(O|H — i3,|00") + (60 [H — i8,|0) + 6(0]0) — 6(0]0)
= (0|H — i3;|60") + (60*{H —id,[0) = 0
(169)

similar to the standard variation principle of time-independent
quantum mechanics. The variation principles in eqs 167 and 169
are equivalent, and either may be used to determine the time-
dependent wave function. In particular, eq 167 constitutes the
time- dependent variation principle of Langhoff, Epstein, and
Karplus.”®> Note that it is not a variation principle in the usual
sense in which the variation in the function to be determined
vanishes at the solution. To establish such a variation principle we
shall henceforth restrict our attention to periodic perturbations.

3.1.2. Time-Averaged Quasi-Energy and Its Variation
Principle. Let us now consider a periodic time-dependent
perturbation of period T and frequency w

Vu+ﬂ:W&w:% (170)
noting that this periodicity does not require all components of
V(t) to oscillate with the same frequency w, only to oscillate with
afrequency nw, where nis an integer (negative, zero, or positive).
It may be shown that the regular wave function oscillates with the
same period T

0(t + T)) = [0(t)) (171)

For such periodic perturbations, we introduce the time-averaged
quasi-energy or simply the quasi-energy as

2 ={Q}; = {(0|H — i0;|0)} (172)
where the time average of a periodic function g(t) is defined by
1 /T
= — t)dt 17
{ehr =7/ 80 (173)

Importantly, the time-averaged quasi-energy .2 is independent of
our choice of regular wave function. To see this, let £’ and .2 be
associated with the two representations |6’> and |6>, which are
connected via eq 161. From eqs 161 and 171 it follows that F'(t) —
F(t) and hence F'(t) — E(t) are periodic in t, yielding

D=2 ={Q(t) - )}y = {F(t) = F()};
—0 (174)

demonstrating that the choice of regular wave function does not
affect the time-averaged quasi-energy.

Let us now consider the variation principle for the time-
averaged quasi-energy. Taking the time average of the variation
principle in eq 167 and invoking the periodicity of |6) and |56>,
we obtain the variation principle for the quasi-energy

02=0 (175)

Conversely, to see that the time-dependent variation principle in
eq 169 follows from that in eq 175 we introduce eq 168 into
eq 175, obtaining

{(O|H — i3;[00"Y}, + {00 [H — i84]0)} 1 + {ct} ;= 0
(176)

As a is periodic, the term {(.}  vanishes. Furthermore, as |(3(~)J‘)
may have an arbitrary time dependence in the interval [0,T],
eq 176 shows that (O|H 18t|(50J‘> +(00* |H— 18t|0) vanishes at all
times, giving eq 169. For periodic perturbations, the time-
dependent variation principles in eqs 167 and 169 are thus
equivalent to the time-averaged variation principle of eq 175.
Assume next that the Hamiltonian contains a term that
depends on the perturbation strength €. By differentiating the
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quasi-energy of eq 172 and using the stationary condition in
eq 175 we obtain

d2

= - {(0[0:H|0)} 1 + {(2.0[H — i0;|0)};
+ {{0|H — i3;9:0)}
= {(010:H|0)} ; + 023556 = {(0[8:H[0)},

(177)

which constltutes a generalization of the Hellmann Feynman
theorem®® to time-dependent perturbations.”® The quasi-energy
variation principle eq 175 and the associated Hellmann—Feynman
theorem in eq 177 will play an important role in our development
of perturbation theory; formally, they are equivalent to the variation
principle and Hellmann—Feynman theorem for time-independent
perturbations, respectively, greatly simplifying development of
response theory.

3.1.3. Quasi-Energy Lagrangian and Its Variation Prin-
ciple. In the theory developed in sections 3.1.1 and 3.1.2 the
time-dependent quasi-energy was calculated as an expectation
value according to eq 165 from the explicitly normalized wave
function |0) in eq 160. Often a different formulation is more
convenient, where the energy is calculated by projection rather
than as an expectation value, from an intermediately normalized
wave function |0) with unit overlap with the reference state

(R[0) = 1 (178)

Such an approach is taken in many-body perturbation theory and
in coupled-cluster theory, for example. By analogy with the
normalized wave function [0) in eq 160 the intermediately
normalized wave function is expanded in the orthonormal basis

(R}
0 = R + ¥ el (179)

and is related to the regular wave function in eq 160 by a real
normalization constant Ny

|6> = NR‘/(S);

Nu = (RIO) = (1 + o) = Q0" (180)
1

As the normalization constant Ny varies with time, the inter-

mediately normalized wave function does not fulfill the usual

time-dependent Schrodinger equation. Instead, inserting eq 180

into eq 162 we obtain the following Schrodinger equation for the

intermediately normalized wave function

(H—iat—Q(t) _lzﬁ) 0 = o (181)

where the quasi-energy Q(t) is defined in terms of |0>, see eq 165.

To express Q(t) in terms of |0) we multiply eq 181 with (R| from

the left. From the intermediate normalization in eq 178 we obtain
N (1)

Given that iNg()/Ng(t) is imaginary and Q(t) is real we may
identify the time-dependent quasi-energy in the intermediate
normalization with the real part of the complex quantity (R|H |0>

Q(t) = Re(R|H|0) (183)

where |6> is a solution to the time-dependent Schrodinger
equation in eq 181. The form of the time-dependent quasi-
energy given in eq 183 is termed the non-Hermitian form in
contrast to the Hermitian form of eq 16S.

Let us now consider the solution of the Schrodinger equation
in the intermediate normalization. Using the definition of the
time-dependent quasi-energy in eq 165 and the relation between
the regular and the intermediately normalized wave functions in
eq 180 it follows from projection of |0> onto the time-dependent
Schrodinger equation, eq 181, that

Ol — 0, — Q(t) - f,:gg 0y= Ny 'Ol — i3 — Q(£)[0)
= N X0|H —id; — Q(t)[0) = 0 (184)

We therefore need to solve eq 181 only in the space orthogonal
to the intermediately normalized wave function. Projecting the
Schrodinger equation in eq 181 from the left with the projector of

eq 163 with x = 0 we obtain the following Schrédinger equation
for the intermediately normalized wave function

PS(H—iBt)|6) =0 (185)

similar to that for the regular wave function in eq 164. Alter-
natively, we can use the coefficients ¢ of eq 179 to introduce a
nonorthogonal basis |f) for the space orthogonal to |0)

* A
|D = |l> -G |R>) G|0> =0 (186)
and write the projected Schrodinger equation as
(i[H —10,[0) = 0 (187)

To establish a variation principle for the quasi-energy in the
intermediate normalization we note that the quasi-energy is calcu-
lated from eq 183 subject to the constraint that the intermediately
normalized state satisfies the projected Schrodinger equation in
eq 187. Invoking Lagrange’s method we construct a Lagrangian by
adding to (R|H|0) the constraints in eq 187 multiplied by the
undetermined multipliers ¢;. Introducing the notation

© =Yz (185)

we obtain the time-dependent complex-valued quasi-energy
Lagrangian

L(t) = (R|H[0) + (O|H — id,[0) (189)
By taking the real part of L°(t) we obtain the time-dependent
quasi-energy Lagrangian

L(t) = Re((R|H|0) + (0|H — i3,|0)) (190)

which is equal to the quasi-energy Q(f) in eq 183 when the projected
equations in eq 187 are satisfied. The Lagrangian is required to be
stationary with respect to variations of the Lagrange multipliers €,
which implies eq 187. To show this implication, we assume statio-
narity of eq 190 with respect to vanatlons in the real and imaginary
parts of the multipliers, ¢; = Ryid, yielding the stationary conditions

oL(t)
ocR

1

— Re(i|H —i3,[0) = 0 (191)
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aL(t)

a5 = Re(i(i[H —i0,[0)) = — Im(i|H —i3,/0)= 0 (192)
G

which are equivalent to eq 187.

The stationary conditions above are to be solved at each time .
By analogy with eq 175, we now introduce the time-averaged
quasi-energy Lagrangian

= {L}T
= Re({(RIH[0)}, + {(O]H —i8,[0)},) (193)

where <6|6> =0, as follows from eqs 186 and 188. Henceforth,
will be called the quasi-energy Lagrangian or the non-Hermitian
form of the quasi-energy. The Lagrange multipliers and the
intermediately normalized state are now determined from the
time-averaged stationary condition

0y =0 (194)
corresponding to the stationary conditions

o A

;0O

=0 (195)

However, for eq 194 to be a valid stationary condition we must
also show that it implies the time-dependent equation, eq 187.
Consider in eq 194 a variation (00|, yielding the condition

00" = Re{(00|H — i3, [0)}, = 0 (196)

As the variation (00| may have an arbitrary time dependence in
the interval [0,T7, eq 196 implies that the equation

Re(00|H — i3, [0) = 0 (197)

holds at all times. Finally, using the fact that (00| and (00| are
both allowed variations in (00|, eq 187 is obtained from eq 197.
We have thus shown that eqs 194 and 187 are equivalent. The
time-averaged Lagrangian variation principle of eq 194 will later
be used to derive compact expressions for the response functions
in coupled-cluster theory.

From the stationarity of the Lagrangian with respect to c and c,
we obtain for the derivative of the Lagrangian with respect to a
perturbation parameter € in the Hamiltonian the relation

47 A — A

Y Re({(RIAHID + (@13HID)) (198)

which constitutes an alternative form of the Hellmann—Feyn-
man theorem, eq 177.

3.2. Perturbation Expansion of the Wave Function

The development in section 3.1 allows us to determine the
solution to the time-dependent Schrodinger equation in the time
domain. Although such a scheme is needed to treat the interac-
tion between a molecule and an arbitrarily strong external field in
a general manner, we now restrict ourselves to cases where the
interaction with the external field may be treated by perturbation
theory, expanding the wave function in orders of a periodic time-
dependent perturbation V(t).

We begin by specifying the form of the perturbation operator.
Allowing for several periodic components we write V(t) in the
general form

V(t) = Y esVpe (199)
B

where the summation over B runs symmetrically over both positive
and negative indices. From the Hermiticity requirement, V() =
V'(t), it follows that all components of nonzero frequency occur in
pairs of opposite frequencies w_ 5, where we adopted the notation

w_p = —Wpg (200)

Allowing for complex perturbation strengths, the Hermiticity of
V(t) gives the following symmetry relations

Vi =V (201)

& = €_p (202)

Instead of using the real and imaginary parts of &g as the in-
dependent parameters, it will be convenient to consider £ and €5*
as independent parameters. For symmetry reasons, static perturba-
tions (@ = 0) are also included with both a positive and a negative
perturbation index. In this way, all perturbations entering eq 199 are
treated on the same footing and satisfy the relations in eqs 200—202.
When evaluating response functions we shall later examine expecta-
tion values of the specific perturbation component with index By
(frequency wp, perturbation strength &5, and operator Vj ).

To ensure that V(t) is periodic, all wp must be equal to some
chosen frequency @ multiplied by an integer. In general, the
frequencies wp correspond to some experimental setup and are
not multiples of some common frequency w. However, for an
arbitrarily small 7 = 0 we can always find integers ng and a
frequency w such that [ngws — 0| < 7.

3.2.1. Perturbation Expansion with a General Refer-
ence State. Having specified V(t), we now consider the expan-
sion of the wave function defined by eq 187, which by
substitution of the Hamiltonian of eq 157 becomes

({[Hy + V(t) —id,]0y = 0 (203)

Using intermediate normalization, the coefficients c(t) of the
wave function |0) in eq 179 may be written as the sum of a
perturbation-independent zero-order part ¢ = {1,°) and a
perturbation-dependent correction

Ac(t) = c(t) — (204)

with coefficients {0,¢,(£) — c{”}. The zero-order wave function
and a basis for its orthogonal complement are then given by

0" = + 3 4% (20)

@) = iy = 4" IR (206)
where (i(°)|f)(0)) = 0 follows from (i|R) = 0. Retaining only the
zero-order terms in eq 203 we obtain the zero-order equation

GO0y = o (207)

dAemonstrating that Hy| (A)A(O)? has no components orthogonal to
|O(O)> and hence that |0(0> is an eigenfunction of H, with
eigenvalue E,

Ho[0”y = Eo[0'”) (208)

Usually the zero-order state is taken to be the ground-state wave
function. However, in the following we do not make this assump-
tion, requiring only that the zero-order state is an eigenstate of Hy
with a nonzero overlap with |R), not necessarily the ground state.
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We now consider the perturbation-dependent correction to
the zero-order wave function. Inserting |D written as the sum of a
zero-order part and a correction term

D =) + (D— ) = [ -Ag R (209)
into eq 203 and using eq 207 we obtain the following equations
for the corrections Ac;(t)

OOy - B A + X ( )| Hylj) — a,,Eo)Ac,-(t)
j

Ly (@mv(t)\j) - 6,j<R\V(t)|/(\)(O)>) Ag(t)

j
=Ac(t) Y RIV(H)[PAG(t) — Aci(t) Y, (R[Ho|jdAgi(t) = 0 (210)
j j
Next, by inserting the expansion of the perturbation V(t) given in
eq 199 and introducing the vectors

(HRl1 ) = (O|H,[R) (211)
(V) = @i o12)
(75"), = GOwsir) (213)

and the matrices

Ay = @ |Holj) — 0;Eo (214)

(74), =
ij

where A is the Jacobian matrix, we arrive at the Schrodinger
equation for Ac(t)

: , ©
O|Vslj) — O5(R[V5[0 ) (215)

(A —id)Ac(t) = — Zee'wﬂf[ + VPAC()

—Ac(t)(VE%HAc(t)ﬂ + Ac(t)(ﬁRm*Ac(t)) (216)

All terms in this equation follow stralghtforwardly from eq 210
except the term containing Vlf[ I , which is obtained in the
following manner

Z (RV[DAG(t) 2 GIVIRY Ag()

Y &L VsIR) Ac(t)e

j, B
— 2 83<j|V,B|R>*ACj(t)e7int

j —B

_ gBe—inf(VEg“Ac(t)) (217)

B

where the Hermiticity of V(t) and eqs 200 and 202 have
been used.

From the Schrodinger equation in eq 216 we may now
determine equations for the wave function parameters to differ-
ent orders in the perturbation

1) 2 —i
AC(t) = Z EBIC;)C iwg, t + Z €Bl€BZC§I? B, © i(wp, + wg, )t 4+ ...
B; BB,

n (n) —i zn: CUka
+ Y (Il ep)ep’ e =0 + ... (218)

B" k=1

where B" is an n-dimensional multi-index of perturbation
indices B;

B" = (By, By, ..., B,) (219)

The multi-index B" is not ordered; consequently, there are, for
instance, six third-order corrections B corresponding to
the six permutations of B;, B,, and B;. However, corrections
referring to the same set of indices are required to be identical,
for example, c,(gzl?Bz = C](322?Bl. By inserting the expansion of the
wave function parameters in eq 218 in the Schrodinger
equation eq 216 and collecting terms proportional to &g,
and to &g &g, we obtain the first- and second-order corrections,
respectively

oy = —(A—wp]) 'V (220)
c](gzl? B, — _P[I 2 [A_ (wBl + sz)I]_l

where we used the identity ng,,)Bz = C](32;,)B‘ and introduced Py, ,,
which averages over the two permutations of 1 and 2

1
Py, yfs.B, = E(fBlB;_ + fBzBl) (222)

In a similar way, the general correction of order n = 2 becomes

Z ka

(n)

CB" :7P1n

[ (m) YR (n—m = 1)
(VBI Bz; . Z By, .oty Bupt _Bl Bui2, <o By

n—1 R[IH
Z CBI, ., 8,H Cgi;,n?)”, B,,) (223)

where P, ] averages over the n! permutations of the integers
1,2, .., n,imposing the required permutational symmetry on
the wave function corrections.

3.2.2. Jacobian Matrix. In the preceding subsection the
Jacobian was introduced in eq 214 and the wave function
corrections were obtained as solutions to linear equations
involving this matrix, see, for example, eq 223. We shall now
study the Jacobian in more detail and, in particular, show that its
eigenvalues are the excitation energles from the zero-order state.

Consider an eigenstate |n ) of the Hamiltonian H, with
energy E,, assuming that this eigenstate has a nonzero overlap
with the reference state |R). Using the nonorthogonal basis
{|0(°)) i)} rather than the orthonormal basis {|R),|i)}, this
eigenvector can be expanded as

A(0) 0l
Wy =107 + ¥ Cli) (224)
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The condition that |n(0)> is an eigenstate of Hy with eigenvalue E,,
may then be written as

(Ho — Ep) <|6(0)> + Z C?i})

A(0)

= (En—Eo)<|0 Y+ X C:‘Ii>> (225)

Projecting eq 225 from the left against the complete basis {|R),
|i(0 )} we obtain the matrix eigenvalue problem

Hb<é> = (E, — Eo)S° (é) (226)

where the shifted Hamiltonian and overlap matrices are given by
(in a shorthand sub-block notation)

(0) .
(RIHo — Eof0")  (R|Ho — Eolj)
A (0) ~ .
@i |Ho — Eo\ﬁ Y @@ |Ho — Eolj)

0 (R|Ho — Eolj)
= ( 0 4 > (227)

A(0)
®I0”y  (RJ) 1o
s GOy gopy | (0 51‘1‘) 29

H® =

The first column of the Hamiltonian H® vanishes because of
eq 208; in the overlap matrix S” the off-diagonal blocks vanish
because of the orthonormality of {|R), [i)} and {|0(0)>, |§(0)>},
whereas the unity of the diagonal blocks follows from eqs 205 and
206. Expansion of the Schrodinger equation in eq 226 now gives
the Jacobian eigenvalue problem

AC" = (B, - E,)C” (229)

whose eigenvalues are the excitation energies E, — E, and whose
eigenvectors define the excited eigenstates |n(0)>. In approximate
theories the eigenvalues of the approximate Jacobian will be used
to define excitation energies.

3.2.3. Perturbation Expansion with an Eigenvector
Reference State. In the standard formulation of time-dependent
perturbation theory, the reference state |R) is chosen as a normalized
eigenfunction |0(0)> of the unperturbed Hamiltonian H,
with energy E,. The zero-order amplitudes then vanish, @ =
0, yielding |f)(0) = |0(O)> and [i(o)) = i) so that the vectors and

matrices in eqs 211—215 reduce to

(), =0 (230)
(7), - (), - (), - oy
Ay = B = (i|Hoj) — 03Eo (232)

(W), = (VI?]),, = ilValj) — 0,00 V5[0)  (233)

y

Note, in particular, how the asymmetric Jacobian matrix A of the
general theory now becomes the Hermitian Hessian matrix B,
Inserting the identifications of eqs 230 and 233 into the wave
function corrections in eqs 220, 221, and 223, which are valid for any
reference state, we obtain the following wave function corrections
valid for an eigenvector reference state

—1
ch = — (¥~ wp1) v} (234)
Cl(:l? B, — P[l’ 2] (E[Z] - (wBl + sz)I)ilvﬁ]cl(;z) (235)
" —1
= —Py (Em -y w3k1>
k=1

n—2
2] (n—1 m 1 n—m—1
x <V[Bl]c1(32, >; B, Z C1(32;)~-, Bm+1v[—]1;1 Cémﬂ; B Bn>>
m=1
(236)

For static perturbations with wp_= 0 these responses reduce to the
standard time-independent perturbation corrections.

3.2.4. Wave Function Corrections As Functions of the
Reference State. The corrections to the wave function depend
on the choice of reference state |R). However, all observables
must be independent of this choice. In section 3.5.2, we will show
explicitly that the lowest order observables are independent of
the reference state. To prepare for this analysis we here study the
relations for the zero-order state and also examine the first-order
wave function corrections obtained using different reference states.

We first note that the intermediately normalized zero-order
wave function |6(0)(R)) of eq 205 (whose dependence on the
reference state is now made explicit) and the normalized zero-
order state |0(0)> are related as

@0 ®)[0"” ()0 (237)

Consider next the first-order corrections, where we examine the
relation between the first-order correction using |R) and the
normalized eigenstate |0(0)> as reference states. For this purpose
the expressions in eqs 220, 221, and 223 are inconvenient as they
refer to expansions in the orthonormal basis {|R), |i)}, which
depends on the choice of the reference state |R). To avoid this
dependence we work instead directly in terms of the first-order
state expressed as

0 (R) = 3 i (R (238)

To obtain the state representation of the first-order correction we
note that the wave function corrections by construction are
orthogonal to the reference state. The first-order correction
|f),(313SR)) of eq 238 is therefore orthogonal to the reference state,
<R|0311)(R)> = 0, giving the condition

PO (®)) = (00 (R)) (239)

The first-order equation in eq 220 may be expanded using the
definitions of A and Vj[gll] in eqs 212 and 214, respectively, giving

A . (0)
GO (Ho— Bo— w3,) ¥ ) i) + v, [07)] = 0
j

(240)
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The first-order equations are thus solved in the s gace spanned
by {O(O)|}, which is the space orthogonal to (0¢ | The first-

order equations can therefore be recast in the basis-independent form

(1)

Pyo (Ho = Eo = ,)[0p, (R))
_ A(0) A(0) (0)
= — VO R)0(R)Pxo V5 [07) (241)

where we used eq 237 The action of the matrix Py (Hy— EO g, )
on the eigenvector |O )vamshes, thus, eq 241 determines |OB )(R))
to within a component of |0 ) Wthh is subsequently determined
by eq 239. To find the form of |OB )(R)) that fulfills eqs 239 and 241
we first note that the ansatz

(1)

10y (®)y = /0" ®)p"”

®)” R0 (0©)) + alo®))

(242)

solves the first-order equations in eq 241 for any a. Insertion of the
ansatz in eq 242 into eq 239 identifies ¢, yielding the first-order
correction

03, (R)) = 6 ) (r)
X (|6](31)(()(0))> _ (R|O(O>)_1(R|OI(311) (0©))|0(@y)

(243)

3.3. Perturbation Expansion of the Quasi-Energy

Having determined the perturbation expansion of the wave
function parameters in section 3.2 we are now ready to consider
the expansion of the quasi-energy (in the Hermitian form) in
orders of the external perturbations. We thereby obtain the time-
dependent analogue of the standard perturbation expansion of
the energy in time-independent perturbation theory; this expan-
sion is subsequently used in section 3.4 to identify expressions for
the response functions.

We assume that the reference state is the eigenstate |0(O)> of
the zero-order Hamiltonian, giving the wave function corrections
of eqs 234—236 rather than the somewhat more complicated
wave function corrections for a general reference state in eqs 220,
221, and 223. In terms of the intermediately normalized wave
function the quasi-energy of eq 172 becomes

o {<O|HA_A13f|O>} (244)
(00) .

Remembering that ¢ i the expansion for the state |0(0) ), here
{1,0} and introducing the matrices H, and Vj for the operators
Hy and V, respectively, in the orthonormal basis {|0 ), i)}, the
numerator and denominator of the time-dependent quasi-energy
may be written in the form

E(t) = (0|H —i3,[0)

:@@+my0%+§@wwwig@@+m)

(245)

S(t) = 00y = 1 4+ Ac'Ac (246)

The time-dependent quasi-energy Q(t) and the quantities E(t)
and S(t) may be expanded in the external perturbations as

Q(t) = i Z (ﬁl 831;) Qé:') efik;wm (247)

n=0 B" \k=

k=1

S - w 75 on
Et)y=Y Y [ I e |Ep' e = (248)

o0 12&)5,(

st =YY ( H sBk>s<’i’ = (249)

n=0 B" \k=1

To accommodate the zero-order terms in these expressions we
conventionally set Hk - 183 =1. We furthermore require that
the corrections Q ), E 13 ) and S ) are permutationally sym-
metric, for instance, Qg 2‘,3 = QB ’s,- The nth-order corrections
are then proportional to the nth- order derivatives of the quasi-
energy

d'Q L
——— = — Qg 250
ngln-deB” n! QB ( )
and likewise for E%'i) and Sl(;'f.).

Inserting the expansion of the intermediate wave function
from eq 218 in eqs 248 and 249, the expansions of E(t) and S(t)
become

n
EB" = Z, —B L

n—1
+ - 1
P[L ] ZO c(—"gz; R Bm+1VBl g»lwz;wfuy Bz <251)
n u m)t n—m
S1(3ﬂ> = Py, 4 Z C(fB)], Y = Bmcgamﬂ, ), B, (252)
m=0

Using eq 178 we obtain for the lowest order terms in the
expansion of S(t) the contributions

SO = O — 1 (253)

S]<311> _ c<1g O 4 O <) -0 (254)

Expansion of the time-dependent quasi-energy Q(t) is most
conveniently determined from Q(¢)S(t) = E(t), which by egs 253
and 254 leads to the identification

ng:l) =Py, 4 (Esn 2 QBl, o BuSBors Bn> (255)

For the zero-order correction we trivially obtain that
Q¥ = E, (256)

Next, given that <@ is an eigenvector of Hy and that the wave
function correction cg OFN orthogonal to the zero-order state @ s
we obtain the following first-order correction to the quasi-energy

QY = BV = ¢ (Hy — wp1)c) + ) Hyc®
+ Oy @ = Oty (© (257)
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To obtain the second-order correction to the time-dependent quasi-
energy we first write

ng?? 5= P, 2 (C(O)Jr (HO - (wBl + wBZ)I) ng? B,

+ C(,zl);lr _ BZHoC(0> + (:1(311)Jr (Ho — CUBZI) clglz)
—l—c()*V c() + c(I)SV 0

R (<, + e )

= by (< (7~ ont) ) + PV + VL)
(258)

where we used the definitions of E) and V™) of eq 233 and the
orthogonality of the wave function corrections to the zero-order
state. From the first-order equations in eq 234 we find that the first
two terms in the final expression in eq 258 cancel, yielding the
following simple expression for the second-order time-dependent
quasi-energy

Q' = P, 2VV5,ch) (259)

We note that the second-order energy depends only on the first-
order wave function, while the zero- and first-order energies in
egs 256 and 257 depend only on the zero-order wave function.

We next consider the corresponding perturbation expansion
of the time-averaged quasi-energy 2. From the relation

1 7. 1 /1.

o eiat = [ &A= 0,0 (260)

TJ o T/ o ’
we observe that the time average of (MeZnt yanishes unless
Yiwpi. = 0. We therefore obtain the following expansion of the
time-averaged quasi-energy

=Y ¥ (le)oy (261)

n B:Y wp=0 F
k

with trivial relations between the time-averaged and time-depen-
dent quasi-energy corrections

ol — t (262)
0 otherwise

The time-averaged quasi-energy .2 is variational in each of the
nonvanishing components of the perturbatlon expansion.
In particular, because 0@ and 22 are linear in the wave
function corrections ¢ of orders k > n, these corrections do not
contribute. Thus, to determine the time-averaged quasi-energy to
order 2n + 1 it is only necessary to include the wave function
corrections up to order n. This is an example of the 2n + 1 rule,
which is proved in section 3.6.

With this observation we are ready to develop compact forms
for the lower order corrections to the quasi-energy. In the
following we consider the perturbation component with index
By since the expectation value of the Vg operator will be the
central quantity when identifying the response functions in
section 3.4. The corresponding frequency wg, is chosen such
that the sum of all the frequencies for a given correction vanishes.
The first- and second-order quasi-energies become

gg) = C(0)+VBOC<0), wp

0

=0 (263)

(1+ (1)

oP = Po VI ), wp, = — g, (264)

Using the first-order equations in eq 220 and w_p, = wp, the
second-order quasi-energy correction may alternatively be writ-
ten in the form

25 5, = P, Vg, = P VI (B — 0 5, 1) 7'V}

= P ey vy (265)

1

To obtain the third-order quasi-energy we expand eq 2SS,
including only wave function corrections to first order, and then
use the expression for Vi in eq 233

20, = P (Ve )

= P[O Z]CfBDVgl]CBIZ’ wWg, = (CUB1 + sz)
(266)

The fourth-order energy is obtained by first expanding eq 255
using only wave function corrections to second order and then
the definitions of E*) and V1) in eqs 232 and 233 yielding

2 2
()go)y By, By, By = P[ol 3] (c(*l)gzy - B (HO B (wBZ + wB3)I)ng? By

+ C(,zj)gzy ,BIVBZCJ(;S) + C(jJ)sZVBl Cg? B,

2 2 1 1 2
- E(O)C(*l);(:, — B Céz? By EJ(Sl) <*1>31 1(32) B;
2
E<Bz) (—;Z, — B B; QBO, B; Bz, Bg)

= P, 3 ( (21)30, —B (Em — (ws, + wBs)I) ng? Bs

1Py e VD

2, 3|1€-B,, — B, VB,€B,

2 2 2
+ 7B0V[ : éz By QES(,,) B, Séz? B3) (267)

which by eq 235 simplifies to the following expression

2 2 2
Qg«:? By, By, By — P[O 3] ( oy gov[ ! Bz? By ngol) 3181(32? Bs)’

CUBO = — (Cl)Bl —+ sz + ng) (268)

for the fourth-order quasi-energy.

3.4. Response Functions

To introduce response functions we now consider the ex-
pectation value of the operator Vj and the expansion of this
expectation value in orders of the external perturbation. Subse-
quently, we identify the response functions with derivatives of the
quasi-energy and use these identifications to obtain explicit
expressions for response functions to third order. Having exam-
ined the symmetries of the response functions we finally examine
their residues.

3.4.1. Definition of Response Functions. To introduce
response functions we consider the Hamiltonian eq 157, where
terms with indices By and — By are omitted from the perturbation

V()= Y epVge @t = YegVpe ot (269)
B# £ By B

Here and in the following the prime indicates that terms with
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indices By and —By are omitted, unlike the perturbation in
eq 199. The response functions are now defined as terms in
the perturbation expansion of the expectation value of an
operator Vg,

Vi) (1) = (Vi) + Yew Vi3 Vi, Doy, %!

B,

+_ Z/ 881 EBZ<<VBU VBu VBz>>wBl, wﬁz (wBl +0)B2)t

B\f B,

1 i
+§ E 831£Bz£33<<VBu; VBU VB;; VB;»wﬁl, Wg,, Wpy
By, By, By

X e’i(wﬂl + ws, +w133)t + ..

(270)

The terms «VB >>; <<VBD;VB »wB ) «VB ;VB ;VB >>wB ) Wy and
{Vs,;Vs,Vs,Vs ))wBl,wm,wB are thé zero- order, linear, quadratic,
and cubic response functions, respectively,”® which describe
how the expectation value of an operator Vy responds to a set
of external perturbations to zero, first, second, and third
orders in the perturbation strengths. Note that the response
functions do not depend on the representation of the wave
function, in particular, they do not depend on whether a
Hermitian (eq 177) or a non-Hermitian (eq 198) form of the
expectation value is used. For example, using the Hermitian
form it follows that (V5 )'(t) = (0|Vj,|0), where |0) is the
time-dependent wave function in eq 156 for the perturbation
in eq 269, while the zero-order response function is a simple
expectation value for the normalized elgenfunctlon of the
unperturbed state: ((Vp)) = (0(0)|V |0 ).

3.4.2. Response Functions As Derivatives of the Quasi-
Energy. To establish a connection between the expansion of the
expectation value in response functions and the expansion of the
quasi-energy we first take the time average of the expectation
value of Vg e ~in! Using eq 260 we obtain

Y
B;:
gy + wp, =0

{ayemom =y + £8,(CVay: Vi W,

+5 >

By, By:
g, + g, + Wz, =0

3 X

By, By, Bs:

8B1£Bz<<VBo:, VBU VBz))wgl, Wp,

g, + wp, + W, + Wp; =0

(271)

An alternative identification of the time-averaged expectation
value {(Vp)e '*'}; is obtained using the time-dependent
Hellmann—Feynman theorem eq 177 for the perturbation of

eq 199 followed by eq 261

) d2
/o ~ (1)
(Vg Yeomt} = = 200, 0
{ o T CL?B0 Bo Fos
epy =&y =0
’ ( ) ’ oB3)
+2 Z SB ‘“Bo. B +3 Z SBI SBZ"ZBO; By, By
By: By, By:
wg, + wp; =0 Wpy + wp, + wp, =0
+4 Y epepen 2% (272)
B1©B,“By~"By, By, By, By

By, By, Bs:
wp, + wp, + wp, + wp; =0

ep,€8,€8,{(Vs,: VB,) V3, VBA»wB‘, wg,, o, T

565

Comparing eqs 271 and 272 we obtain the identifications

d2
(Ve = 3= 24 (273)
By
dzog (2)
iados, = g = 228, (274)
32
<< Bos V By Bz»a)Bl, g, d830d831d832
3
‘(21(30? By, By (275)
(Vs Vs,y Vs, VBz>>w31, sy, O,
d*o 4
= 4'“21(30? By, By, By (276)

dng ngl C],SB2 d833

and conclude that the response functions are the derivatives of
the quasi-energy (in the Hermitian form) with respect to the
perturbation parameters. We shall later extend this identification
to the quasi-energy in the Lagrangian form.

3.4.3. Explicit Expressions for the Linear, Quadratic,
and Cubic Response Functions. In section 3.4.2, we ex-
pressed the response functions in terms of the quasi-energy
corrections QB . We now combine these identifications with the
results of section 3.3 to express the response functions in terms of
wave function corrections.

If we are only interested in lower order response functions, up
to the cubic response function, for instance, then it is convenient
to introduce a more compact notation for the operators and
frequencies. We use A, B, C, and D for the operators Vg, Vg , Vg,
and Vj, respectively, and w4, g, @ ¢, and @p, for the frequencies
g, Wg, Wg, and wg, respectively. The paired operators occur
again with opposite frequencies, for example, w4 = —w4. We
furthermore assume that the basis vectors |i) are elgenfunctions

of Hy with energies E; in which case the matrlx E*"in eq 232
becomes diagonal
El[f] = 5i]-a)i, w; = E,’ _E() (277)

Using eq 276 and the form of the response functions in eqs 264,
266, and 268 we arrive at the spectral representation of the
response functions”'

(A B, = 2P Vil

(0©)|AiXi|B|0®)

|
= 2Py 21', P (278)
«Av B} C))wg, wc — 3'PE;A B, C]C.EU I[S]C(C

— 31pPa

. (0@ AliXi{Blj)G|Clo®
i (wa + o)(wc — )

(279)

A, B, (]
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(A58, C Dy e 0y =My (e VI — 258

_ 04 (0 |Ai)i[BIj)j| ClEXKID|0®)
= —4lp y
4,5 ¢ D] ik (wa + wi)(wc + wp — w;)(wp — wy)

(0)141i\ilBlo© )| cliVi (0)
_ QOO _(@OICiDlo®) 250)
; wp — W; (wc + w))(wp — w))
where we introduced the shorthand notation
X = X —(09]x]0)y (281)

and where P{{'s c p] averages over all permutations of A, B, C, D
and adjusts the frequency w4 such that all frequencies add up to
Zero: Wy + Wp + W + Wp = 0. As a result, we obtain from eq 278
the following well-known expression for the linear response
function in the spectral representation

(01 ]Ali)i[BJ0)

5 (0)|BJiXi|A|0©)
: wg + w;

(282)

(A By, = Y,

i wp — W;

3.4.4. Symmetry Properties of Response Functions. A
number of symmetry relations and identities exist between
response functions of the same order. First, as the response
functions are symmetric in the permutation of the indices we
have

(A;B)),, = ((B;A)),, = ((B:A)_,, (283)

«A; B, C»wB, wc — <<A§ G B»wc, wp
= <<C7 A, B»wA, wg (284)

(4;B, C, D)o, we, wp = (A5G B, D)o, oy,
= <<D;A) B, C»wA, wg, w¢ (285)

Next, assuming that the operators A, B, C, D are Hermitian,
additional relations are obtained by setting (A)* = (A) in eq 270.
Using eqs 200 and 202 we then obtain the following relations

(A;B)),, = (A;B).,, (286)
((A;B, Oy we = CA;B, O, e (287)

<<A; B, G, D»wB, we, wp <<A;B: G D»iw& —we, — op

(288)

between response functions at positive and negative frequencies.

3.4.5. Residues of Response Functions. From the spectral
representations of the linear, quadratic, and cubic response
functions given in eqs 278—280 it is seen that these tend to
F0o0 when the frequency parameters w,, g, ... tend to plus or
minus an excitation energy, +®j of the unperturbed system. For
example, the linear response function of eq 278 becomes infinite
for wp — ws However, if the linear response function is multiplied
by wp — wj then the resulting function (wp — W/){(A;B))w,
is finite for wg — wyand the linear response function is said to
have a first-order pole with an associated residue limwﬁﬁwf
(wp — wp{(A;B))s, Higher order response functions have a
more complicated pole structure, for example, the cubic response

function <<A;B,C,D)>w5,wowD has poles at w¢ + wp = + Wy see
eq 280.

The residues of the response functions provide important
information about the unperturbed system. From eq 278 we
obtain the single residues of the linear response function as

lim (w5 — 04 B, = (014[Xi|B0®)  (289)

wp

lim  (ws+ o)A BY),, = — (0 [BliXi|4|0®)

wp— — w;

(290)

From these residues we obtain transition-matrix elements
<O(O)|A|i> of an operator A between the reference state |0(0)>
and states |i) different from the reference state. Assuming that
these transition moments are known, the transition moments of
an operator A between two states |i) and |j) both different from
the reference state |0(0)) are obtained from the double residues of
the quadratic response function in eq 279

lim (wB + CU,') . _liil_w (wC - CU]')«A; Br C»wg, wc

= —0"|BJi)ilAljXj|Clo) (291)

Finally, the following single residue of the quadratic response
function

~1i£1>w (a)c — LL),-)«A; B, C»wB, wc

w i

ey OVADGIEAGICO)
(4 B] ; w, + o)

(292)

is important for calculation of induced transitions.

3.4.6. Equations of Motion for Response Functions.
In this subsection we consider a set of relations between response
functions known as the equations of motion.”* To obtain these
relations we use the time-dependent Schrodinger equation in
eq 156 to write the total time derivative of an expectation value of
a time-independent operator Vg in the form

%@(f) [V, [0(£)) = €:0(¢)| Vg, |0(£)) + €0(t) |V, [3:0(¢))

= —«0(t)|[Vs, H]0(t)) (293)

which constitutes the Ehrenfest equation for the operator VBU.73
Assuming that neither V nor any terms in the Hamiltonian
contains terms involving time differentiation, eq 159 may be used
to write the expectation values of eq 293 in terms of the regular
wave function |6)

SOV 0) = 01V o) + @IV, [30)
= —i0[[Vy, H]|0) (294)

dx.doi.org/10.1021/cr2002239 |Chem. Rev. 2012, 112, 543-631



Chemical Reviews

Expanding the expectation values in eq 294 in response functions
using eq 270 we obtain

—i Y wp,e5,{(Vp,; Vg, Mo, e ot
By

i B
5 Y epen, (w5 + ws,){(Vs,: Ve, Vi, Do, wn, @ (on tom)t 4
By, B,

= —i % e, (OOVa, V]I0®) + [V Hol: Vi, )& "
B,

i
—= Z £, €, (Z«[VBO; VB1]§VBZ>>sz
231. B,

+<<[VBU; HO]; VBU VBz»wBl, wnz)e_i<wBl + wBZ)t + (295)

By equating terms of the same order in the perturbation strength
we obtain the following equations of motion

05, Va3 Vi D, = (0|[Vay, V][0

+ <<[VB0) HO]; V31 >>w51 (296)

(CUB1 + sz)«VBg;VBl; VBz»a)Bl, ws,
= Py, y{[Vay VB,J; Ve, Dy,

+ <<[VB0; HO]; VB]} VBZ»(uBl, Wp, (297)

for the linear and quadratic response functions.

The equations of motion for the response functions may be
used to obtain relations between transition-matrix elements.
Consider, for example, the linear response function. The equa-
tion of motion in eq 296 and the finiteness of (O(°)| [A,B] |0(0))
give the relation
lim (w5 — i) wp((A; B)),,

(0]

= o lim (05— )[4 Hol;B)s, (298)

g
which in combination with eq 290 yields
w04y = (0[[A, Ho]|i) (299)

This relation also follows trivially from the fact that |0(o) ) and |i)
are both eigenfunctions of Hy. However, the important point is
that eq 299 was here obtained only by assuming that the time
development fulfills the Ehrenfest equation in eq 294. Therefore,
in any approximate theory that fulfills the Ehrenfest equation,
transition moments and energies identified from the poles and
residues of the linear response function satisfy the equation of
motion, eq 299.

3.5. Response Functions As Derivatives of the Quasi-Energy
Lagrangian

In section 3.4, response functions were developed from
expansion of the quasi-energy in the Hermitian form, eq 244.
However, in the development of response theory for coupled-
cluster theory it is important to use the quasi-energy in the non-
Hermitian form, eq 193. In section 3.5.1, we therefore study the
expansion of the time-dependent quasi-energy Lagrangian of
eq 190 and the time-averaged quasi-energy Lagrangian of eq 193
in orders of the external perturbation.

Using an approach similar to that of section 3.4, the theory may be
developed to arbitrary order in the external perturbation, see refs 74
and 75 for examples from coupled-cluster theory. We here restrict

our treatment to terms up to second order in the perturbation, which
allows us to identify the linear response function. It will not be
assumed that the reference state is an eigenstate of the zero-order
Hamiltonian, so the wave function expressions will be those of
eqs 220, 221, and 223. Although the expressions for the quasi-energy
corrections and the response functions obtained in section 3.5.1
differ from those developed in section 3.3, they are equivalent, as may
be demonstrated explicitly by a (tedious) comparison of terms.

3.5.1. Perturbation Expansions of the Lagrangian Quasi-
Energies. By analogy with the expansion of the time-dependent
quasi-energy and the averaged quasi-energy in the Hermitian
form, we have the following expansions for the corresponding
quasi-energy Lagrangians

c = - C(”) B zﬂ: @t
@ = ¥ 3| e 1 (300)
n=0 B" =
o) n " —i z”" wg, t
Ly=%Y Y (kHIeBk>L,§)e = (301)
n=0 B" =

r-3 3

n B:Y wp =0
k

(1;[ eBk>;/’§;1) (302)

Given that L(t) is the real part of L°(t) we obtain from eqs 300
and 301 the simple relation

1 * 1
LY = E(Lffn”) + L ) = iciL;(n”) (303)
where —B" contains the elements —B, and where the operator
C* is defined by
C*Xp, = Xp + X', (304)

By analogy with eq 262, the terms in the time-dependent and
time-averaged quasi-energy Lagrangian are related as

1 cln
ECiLB(n) if ¥ wp, =0
k

0 otherwise

7y =

(305)

The expansions of the quasi-energy in the Hermitian and non-
Hermitian forms in eqs 261 and 302, respectively, are identical
for all field strengths. The two expansions must therefore be
identical term by term and have the same derivatives

7y =0 (306)

Furthermore, as the expansion coefficients .2 & are proportional
to the response functions, see eqs 274—276, the response
functions may also be expressed in terms of W, yielding the
following linear, quadratic, and cubic response functions in the
Lagrangian form

&7 ) @)
V.V, — 5 _r = C*LS
<< By Bl>>w31 ngodeBl Z—V By, B, By, B,
(307)
&3 3 L)
<<VB0; VBI; VBZ»a)Bl, wg, = ng dSB ng = EC LBOr By, By
0 1 2
(308)

dx.doi.org/10.1021/cr2002239 |Chem. Rev. 2012, 112, 543-631



Chemical Reviews

((Vgy; Vg, Vg,, VBz>>wBI, ws,, O

a7 4! «4)
g —5CL 309
deBongl deEzngz 2 Bo, By, By, By ( )

to be compared with the expressions for response functions in
the Hermitian form in eqs 274—276.

To obtain the expressions for the terms in the expansion of the quasi-
energy Lagrangian, the coefficients of the multiplier state |0) of eq 188
must be expanded in the perturbation. By analogy with the expansion
of the wave function parameters the multipliers are expanded as

at) =0 + Y e e

B,

—(2 —i t
+ Z gBlngcB(u)Bze 1(0)81 +sz> T+ o
BB,

n " 7izn:w5t
+ ¥ Yl )y =

n B k=1

(310)

We are now ready to derive the expressions for the zero-, first-, and
second-order terms in the expansion of /. As the Lagrangijan quasi-
energy_ ¢/ is variational in the wave function and multiplier parameters,
these parameters to order n determine /” to order 2n + 1. Furthermore,
the multiplier parameters occur linearly in ./, allowing for an
additional reduction discussed in section 3.6: the multiplier
parameters to order n determine the time-averaged Lagrangian
quasi-energy to order 21 + 2. In short, to obtain the Lagrangian to
second order, we need the wave function parameters to first
order and the multipliers to zero order.

Introducing the expansion of eq 310 in the multiplier state (0| of
eq 188 and the expansion of eq 218 in (0| we may expand the time-
averaged quasi-energy in orders of the perturbation. Using this result
we obtain from the expansion of eq 189 and from eq 305 the terms
contributing to the lowest order quasi-energy terms as

79 _ Re ((R|H0|6(O>) + @9 |H06(0))> (311)
) 1 _
7y =5 <<R|VBO 0 + @1va, 6(°>>> (12)

o 1 (1) — (1)
fﬁ? B = ECiP[o, 1] |:<R|VB0|6BI ) + <0(O>|VBO|6BI )

(1) (0)
(T4 @M>m&9+®%@0]

(313)

These expressions provide alternative forms for the lowest order
corrections to the time-averaged quasi-energy, which by definition
are identical to those obtained previously. As the zero-order state is
an eigenstate of H (eq 208), the zero-order term becomes

7O = g, (314)

The first-order correction of eq 312 must similarly be identical to that
of eq 263, and insertion of eq 313 into eq 307 gives an alternative
form of the linear response equation of eq 278. The equivalence
between the forms of the first-order corrections is explicitly demon-
strated in the following subsection, where we derive the expression
for the zero-order Lagrange multipliers.

3.5.2. Zero-Order Lagrange Multipliers. The zero-order
Lagrange multipliers, which determine the quasi-energy Lagran-
gian to second order, are most conveniently identified by
invoking the stationarity of the time-averaged zero-order La-
grangian of eq 311 with respect to the variations in the zero-order
wave function parameters

d %, )
7{2m%wﬁ+z@mwwm
e, j ij
(Z G s ,-0> Z <R|H0\])c > =0 (315)

which in terms of the Jacobian A of eq 214 may be written in the
form

RIH K + ¥ 5% 4 = 0 (316)

Introducing the shifted Hamiltonian H" of eq 227, the zero-order
multiplier equations may be written in matrix form
(1 cO)H" =0 (317)
1
showing that (c_<°) ) is a left eigenvector of the shifted

Hamiltonian H® with zero eigenvalue, corresponding to an
eigenvalue Ey of the unshifted Hamiltonian Hy. Assuming that
this eigenvalue is nondegenerate, we conclude that the state

1
defined by =0

R + ¥ i) = a(R) +y cf°)|i)> (318)

i

is proportional to the zero-order state

where « is some scalar. To determine a we insert the expansion
in eq 206 into eq 318, enabling us to make the identifications

—© _ (0 1 _ 1
¢, =aq’,a= = — A0 (319)

1+ Y1 @

The zero-order multiplier state |6(0)> occurs in the following
together with the reference state, making it convenient to
introduce the (zero-order) lambda state

IAQy = R) + ¥ 59O (320)

which from eq 319 may be written in the form

A0y = — L5 (321)
(0) | 6(0)>

which shows that (A(0)|6(0) Y=
As a first use of the explicit forms of the Lagrange multipliers we
show that /" of eq 312 is identical to .¢ oW of eq 263, thereby also
demonstrating that _/ 1) g independent of the choice of the
reference state even though the left- and right-hand states of eq 312
both depend on this state. The equivalence is easily established using
eqs 237, 320, and 321 and the identification in eq 263
O (v, 0 ()
@ wp 7wy (322)

— <0(0>|VB0‘0(0)> — C(O)VBDC(O) = 21(30)

A =3 ARV 0 ) =

=" By
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The higher order terms, such as the second-order corrections_/” @ of
eq 313 and Y 0@in eq 264, may similarly be shown to be identical.

3.6. Elimination Rules

In the calculation of the terms in the expansion of the quasi-
energy in sections 3.3 and 3.5 we made repeated use of the 2n + 1
and 2n + 2 rules, which state that wave function parameters and
Lagrange multipliers to order n determine the quasi-energy to order
2n + 1 and 2n + 2, respectively. These rules are developed in this
section, where we also briefly discuss alternative elimination rules.
We adopt a formalism that includes both exact and approximate
wave functions. For an early exposition of these rules, see ref 76.

3.6.1. 2n + 1 Rule. Consider a time-averaged quasi-energy
2(&,A) that depends on the external parameters € and the wave
function parameters A. The optimized quasi-energy is given by

2(e) = 2(g, Ale)) (323)

where the optimized wave function parameters A(¢) are deter-
mined from the variational condition

32(¢, Ale))

) =0 (324)

In response theory, we are interested in the expansion of
2(¢g,A(€)) in orders of &

9(e) = 29 4 oW 4 %9%2 + .. (325)

In particular, we wish to determine expressions for the perturbed
quasi- energles 2™ in terms of the perturbed wave function
parameters A of the expansion

Ae) = A9 4+ 2We 4 %/1(2)82 + ... (326)

To determine the perturbed quasi-energies, we expand the quasi-
energy in orders of € and 4

e, 4) = 2 + 200 4 00O}

+%Q<2°)32 + oWer 4+ %Q(OZW + o
(327)

where we introduced a short-hand notation for quasi-energy
derivatives

" + nJ(E, )
demaL”

o) = le=0, 2=0 (328)

By inserting the expansion in eq 326 into eq 327 and collecting
terms of the same order of &€ we obtain to lowest orders

20 = 90 4 9N 4 | (329)

o0 = 000 o 9y 4 oo1),(1)

4+ 200200 4 (330)

200 = 000 4 590N 0 4 5 o))
+ 2.0012)4(0) 4 (1) +2(01)l<2)
+ 0(02)7(0)2(2) + 0(02) 4(1) 1 (1)

AW (331)
210

4 0030

where the omitted terms are of second and hlgher orders in
From order considerations we note that /1 does not occur in
quasi-energies of orders less than , that A" occurs only linearly
in quasi-energies up to order 2n — 1, and that A appears
nonlinearly in qua51 energles of order 2n and greater. The zero-
order parameters A have a special status and may appear to
infinite order, depending on the form of 2 (¢&,4). The structure of
the perturbed quasi-energies is therefore

9n — g(")(&(’olJU AR Uy R E R YO (332)
infinite nonlinear linear
order P p

where [n/2] is the greatest integer less than or equal to n/2. The
quasi-energy . 2 thus depends linearly on A9 for [n/2] <k <n,

We now wish to identify the stationary conditions for 2 (")
with respect to variations in the perturbed wave functions 1)
Using the chain rule and the fact that AW i independent of € we
obtain

920 1o Ae)) F 0.2(g, Ae))

’8—0

™ 92 Cee a® |

9 0A(e) 02(g, Ale)) _ e a2(g Ale)
Cdem g aA(e) | den k! 0A(e) »
(333)

where we inserted eq 326. From the variational condition in eq 324
it now follows that the nth-order quasi- energy 20 s stable toward
variations in all perturbed parameters Al

9o
n®

According to eq 332 ¢ oM depends linearly on A% with k > [n/ 21
while according to eq 334 .2 ") is stationary with respect to A%,

The coefficient multiplying A% in the expression for 20 must
therefore be zero. We conclude that 2" must be independent of

A0 for k > [n/2]

(334)

20 = ot @ 20 Alln/2Dy (335)

We have now established the 211 + 1 rule: the wave function to order
n determines the quasi-energy to order 21 + 1. Applied to the lower
order quasi-energies in eqs 329—331 we obtain (in a parametriza-
tion with A = 0) the following simplified expressions for the
energies

20 = 9 (336)
2 = 900 (337)
20 = 9@ 4 5ot 4 o131 (338)
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20 = 900 4 3001);(1) 4 3902),1),01)

4+ 00031141 (339)

We note how the first-order wave function determines the quasi-
energy to third order.

Having established the structure of the quasi-energies 00 in
eq 335, we shall now use the variational conditions in eq 334 to
determine A, First, assuming that k < n we obtain from eqs 333
and 334 the stationary conditions
AR K 89(e, Ae))
TNk Joen—k  9i(e)

a2 & a2(g Ale))
aA® T der kI BA(e)

=0

e=0 e=0

(340)

where we used the Leibniz rule for the differentiation of a product
of two functions

WUCHI <n>aff<e> o ~g(e)

oe" gt Qen i

(341)

1

Next, we note that the stationary conditions in eq 340 are not all
independent, depending only on the value of # — k rather than
separately on n and k. We therefore only need to consider the
conditions

a2m 3 3a2(g Ae))

a©  den A(e)

=0 (342)
=0

By satisfying the stationary conditions with respect to A in
eq 342 for all n > 0 we ensure that the expansion of d.2(¢, 1(¢))/
9.(¢) about € = 0 vanishes to all orders. The conditions in eq 342
for all n = 0 are therefore equivalent to the conditions in eq 324
for all values of &.

Let us now consider the structure of the nth-order response
equations 3.2 /81(%) = 0 of eq 342 in more detail. Differentiat-
ing eq 342 with respect to A%, using the chain rule, and inserting
eq 326 we obtain

L0 a2M aaAe) 9 a2(s Ale)
PYLORPYIC) o T Qen Ak 3&(8) 83.(8)

=0

[ 72> Me)
T 9er (E a(e)’ > '80 (343)

which may be simplified by application of the Leibniz rule in
eq 341 to give

3 920
PYICRPYIC
=0
n\ ok 82 Ale))
<k>ag;«,k 8/1(8)2 . (k<}’l>
=1 L k= (344)
0 (k>n

We conclude that the stationary conditions in eq 342 may be
written in the form”®

5.0
3/1(0)

where R isa polynomial in A9 withk<n. Toa given order 1 in
the perturbation the response equations

2030 — g0 k1) (346)

= 000 4 RO 2ty — o (345)

are solved recursively for k < n beginning with A the solution
A0 depending on the solutions A0 with 1 < k.

3.6.2. 2n + 2 Rule. In the intermediate normalization, the
time-dependent quasi-energy Q(f) in eq 183 is not variationally
determined and is therefore not suited for calculation of response
functions. In contrast, the time-dependent Lagrangian L(t) in
eq 190 provides us with an equivalent, variational formulation of
the energy in the intermediate normalization, suitable for re-
sponse theory, noting that the corresponding time-averaged
quasi-energy /"in eq 193 satisfies the stationary conditions in
eq 194. Likewise, in approximate theories the approximate quasi-
energy is often not variational.®® Rather, the wave function
parameters satisfy some subsidiary condition e(&,A(¢)) = 0 such
as the amplitude equations in coupled-cluster theory. In such
cases, a variational guasi—energy Lagrangian may be constructed
of the general form®®”’

V(&) = (& Ae), Ae))
= 2(¢ Ae)) + A(e)e(e, Ae)) (347)

where 1 (¢) is a collection of Lagrange multipliers. For the
Lagrangian in the intermediate normalization in eq 193,
e(g,A(g)) and 4 (g) correspond to egs 185 and 188, respectively.
The Lagrangian is by construction stationary in the multipliers as
well as in the original wave function parameters (omitting
arguments for brevity)

A (348)
a

as 02 —0e

7w O (349)

The variation with respect to 4 in eq 348 gives the equation for 4
and is trivially satisfied, whereas the variation in 4 in eq 349 yields
a set of linear equations that determine the multipliers. By
analogy with the quasi-energy expansion in eq 325 we expand
the Lagrangian in the perturbation strength

, , 1
L) =70 + Ve 4 E,‘/@)ez + . (350)

By construction, perturbation-strength derivatives of a quasi-
energy and its corresponding Lagrangian function are identical.
However, by constructing a Lagrangian function we have the
freedom to eliminate computationally expensive parameters by
means of the variational conditions in eqs 348 and 349. We shall
now examine the elimination rules for the quasi-energy expressed
as a Lagrangian in eq 347.

Since the Lagrangian satisfies the variational conditions in
eq 349 with respect to the wave function parameters A, the 2n + 1
rule for these parameters follow in the same way as for the
variational quasi-energy in section 3.6.1. Thus, the responses AW
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Chemical Reviews

with k < [n/2] are sufficient to evaluate the nth-order Lagrangian
/™. Likewise, it is possible to eliminate some of the perturbed
multipliers 4 @ from s ’("), noting that the Lagrangian is both
linear and stationary in the multipliers, see eqs 347 and 348.
However, we cannot eliminate all multipliers 4 ® independently
because the preceding elimination of A% (in accordance with
the 21 + 1 rule) has modified some of the terms containing 4 ®
(i < n — k) in eq 347. For example, elimination of 2® with [n/2]
< k < n removes the factor multiplying A from /", Since this
factor contains 1 ¥ and A with i < n — k, 0z ) s no longer
variational in these parameters. In short, removal of A% with
[n/2] < k < n from /™ precludes subsequent removal of 1 ®
with i < n — k, binding them to ])(") .
Having made this observation we now examine which multipliers
79 are affected when the perturbed wave function parameters AW
are eliminated from the quasi-energy Lagrangian in accordance with
the 21 + 1 rule, following Kristensen et al.”® For clarity of presentation,
we consider even- and odd-order quasi-energies separately.
o 7D, Application of the 21 + 1 rule to "V removes
and higher order parameters, binding 4 ) with k <
2n+1—(n+1)=n to,{’@"“). Since 7 ) with k > n may
still be removed from 2n+1) by the 21 + 1 rule, 1 ® with
k < n are sufficient to determine "V,
), Application of the 21 + 1 rule to ./ 2n42) Lemoves
A2 and higher order parameters, binding 4 ® with k <
2m+2— (n+2) =nto 2 Since 1 % with k > n may
still be removed from /2" by the 21 + 1 rule, £ ®) with
k < n are sufficient to determine A2n42),

}'(m)

We have now established the 2n + 2 rule for Lagrange
multipliers: the multipliers to order n determine the Lagrangian
to order 2n +2.7%77 Together with the 2 + 1 rule, the 21 + 2 rule
is important in reducing the cost of calculating perturbed quasi-
energies of variational and nonvariational methods.

3.6.3. Alternative Elimination Schemes. In the discussion
of the 2n + 1 and 25 + 2 rules we eliminated response parameters
for the full set of N perturbations responsible for a given
molecular property. Alternatively, these elimination rules may
be applied to a subset K of the full set of N perturbations that
determine the property of interest.”® In this way, we eliminate as
many parameters as possible for the first subset of K perturba-
tions at the price of calculating higher order parameters for the
remaining subset of N — K perturbations. Such a strategy is useful
when the molecular property involves a mixture of extensive and
intensive perturbations.

For extensive perturbations the number of components is
proportional to the system size (e.g., the 3N,ioms geometric or
nuclear-magnetic perturbations of a molecule), whereas the
number of intensive perturbations is system independent (e.g.,
the three electric or magnetic dipole operators of a molecule). It
is then advantageous to eliminate as many response parameters
as possible involving the computationally expensive extensive
perturbations. Consider, for example, a third-order molecular
property expressed as a quasi-energy Lagrangian derivative involving
one extensive differentiation (with 3N,¢,ms components) and two
intensive differentiations (with 3 components), schematically de-
noted as /. Applying the 2n + 1 rule to all perturbations, all
2(3Noms + 3) first-order parameters A%, A, 1, and 1" must be
determined (disregarding zero-order parameters), making the
calculations expensive for large molecules. Instead, by applying
the 2 + 1 rule to the extensive perturbations only, we may eliminate
all occurrences of A° and 1 € from L*" at the small cost of not being

able to remove any intensive perturbations and therefore having to
determine 6 first-order parameters A' and 4 ' and 12 second-order
parameters A" and 1" In this manner the number of response
equations to be solved is 18 (rather than 6N, + 6), indepen-
dently of the number of atoms in the system, reducing the
computational cost for large molecules.””*’

The above development described the formal analysis re-
quired to minimize the number of response equations to be
solved. For even-order response functions we may alternatively
develop expressions that ensure that the errors of these response
functions are quadratic in the error of the highest wave function
corrections. Following the development of Sellers for time-
independent perturbations®" this has been discussed for the
linear response function by Koch and Harrison.*

3.7. Damped Response Theory

Molecular response functions become singular when one or
more of the optical frequencies are equal to an excitation energy,
as discussed in section 3.5.2. These singularities give an unphy-
sical behavior of the calculated molecular properties in the
resonance region such as divergent dispersion curves and in-
finitely narrow absorption peaks, reflecting the infinite lifetime of
excited states in standard molecular response theory. For a
rigorous treatment of molecular properties near resonance, the
finite lifetime of excited states must be accounted for. However, this
is not readily achieved in traditional response theory. Instead, finite
lifetimes are in damped response theory imposed by multiplying the
excited states by a damping factor.”" The resulting phenomenolo-
gical lifetimes are related to the widths of the absorption peaks by the
energy—time uncertainty principle.

From a practical point of view, introduction of finite excited-state
lifetimes in damped response theory allows broadened absorption
(or dispersion) spectra in any frequency region to be calculated
directly, without explicit reference to the transition strengths of
individual excited states. The damped response functions describe
standard absorption transition strengths, such as the residue of the
linear response function in eq 290, with superimposed absorption
(or dispersion) line-shape functions. Direct calculation of ab-
sorption spectra in damped response theory is particularly
advantageous when many transitions need to be addressed in
the traditional residue approach. Important cases include
electronic transitions to high-lying excited states, for example,
in X-ray spectra,®** and absorption spectra of large molecules
in general,®> where the excited-state density is particularly
high. Another important use of damped response theory is
calculation of the polarizability at different imaginary frequen-
cies, giving direct access to the Cg dispersion coeflicients that
govern weak intermolecular interactions.®>%¢ %%

In their complex propagator approach, Norman et al.*’ in-
troduced a damping term into the Liouville equation to account
for finite lifetimes and identified damped response functions
from this equation. Using a quasi-energy formulation Kristensen
et al”® introduced finite lifetimes directly into the response
functions in terms of complex excitation energies. The two
formulations are equivalent, giving the same damped response
functions. We note in passing that Jensen, Autschbach, and co-
workers also presented linear response functions using finite
lifetimes at the time-dependent density-functional level of
theory,” applying it, for instance, to the study of resonance
Raman scattering.”> In all formulations finite excited-state life-
times are introduced by means of an empirical damping para-
meter. This parameter is input to the response calculation; the
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theory provides no recipe for determining the damping para-
meter. Below, we discuss damped response theory in terms of
complex excitation energies.

3.7.1. Phenomenological Damping of Excited States.
Let us assume that the excited-state wave function |n) is a
solution to the time-independent Schrodinger equation

Hy|n) = E,|n) (351)
The corresponding time-dependent excited state given by

n(£)) = e *|n) (352)
then trivially satisfies the time-dependent Schrodinger equation

id:|n(t)) = Ho|n(t)) = Eu[n(t)) (353)

In particular, the norm of |n(t)) is constant in time
(n(t)|n(t)) = (nln) =1 (354)

Therefore, no decay occurs from the excited state to the ground
state (or to other excited states). In other words, the lifetime of
the excited state |n(t)) is infinite.

In reality, an excited state has a finite lifetime but this lifetime
cannot be accounted for by the Hamiltonian H,. Instead, a
phenomenological description of the lifetime may be obtained by
introducing a damped excited state [7i(t)) according to

(1)) = e [n(t)) = e " V) (359)

The norm of the damped excited state [7i(t)) decays exponen-
tially in time

(t)|a(t)y = e " (356)

and (2y) " may therefore be interpreted as the effective lifetime of
the excited state. Unlike the undamped state |n(t)) in eq 353, the
damped state [7i(f)) does not possess a well-defined real energy

i0|a(t)) = (B —iy)|7(t)) (357)

Comparing eqs 353 and 357 we see that damped excited states
may be introduced through complex excited-state energies

E, — E, —iy (358)

In the absence of external perturbations the ground-state lifetime
is infinite and the damping parameter associated with the
ground-state energy E, is zero. Substitution in eq 358 is therefore
equivalent to introduction of complex excitation energies

w, —~ w, —iy, w, = E, —E, (359)

Conceptually, damped response theory only requires the
substitutions in eq 359 to be performed in the standard
response-function expressions to introduce finite exited-state
lifetimes. The empirical damping parameter y is an effective
inverse lifetime common to all excited states, leading to
broadening that in reality has a number of physical origins:
spontaneous-emission broadening, Doppler broadening, vi-
brational broadening, and collisional broadening. It is difficult,
ifatall possible, to devise an accurate ab initio model that takes
into account the different broadening effects and provides a
value tailored to each excited state; instead, finite lifetimes are
treated empirically by means of the single damping parameter
y common to all excited states.

Damped response functions are complex and describe broa-
dened dispersion and absorption spectra, as illustrated for the

complex polarizability in section 3.7.2. In section 3.7.3 we briefly
discuss higher order damped response theory.

3.7.2. Damped Linear Response theory. By introducing
complex excitation energies into the standard linear response
function expression in eq 282 according to eq 359 the resulting
damped linear response function ((A;B)),,, may be written as

©)|A(i)|B|0© i1A|00@Y%0©) Bl
G, - - 3 <<(Ew.|f’-mf|0 ) | GO0 |B|;>>
j —iy) — wg (wj—iy) + wg

(360)

j

Note that the excitation energies in the second term are complex
conjugated. Formally this is done to retain with the underlying
structure of the Hessian matrix E™! in eq 232 also in damped
response theory, see ref 90 for details. By performing the complex
conjugation of the second term in eq 360 we obtain

5 (0©|AJj)j|BJ0®) N (ilAJ0®)0" |B7)
w; — (wp + iy) w; + (wp + iy)
(361)

<<A7 B>>w5 +iy — T d
J

where the imaginary iy term in eq 360 is now effectively
associated with the frequency wp rather than with the excitation
energy ;. For this reason we added the iy term to the frequency
argument of the linear response function. Thus, damped linear
response theory effectively corresponds to introducing a complex
optical frequency

wp — wp + iy (362)

Damped response theory therefore rec31uires solving response
equations with complex frequencies.*””**° By construction the
damped linear response function in eq 361 satisfies the symmetry
relation for the standard linear response function in eq 283

(45 B))0, + iy = <<B§A>>7(w3 +iy) (363)

Thus, phenomenological introduction of complex excitation
energies as described above preserves this fundamental symme-
try property of the linear response function.

To illustrate the underlying structure of the damped response
function in eq 361 we consider the case where A = B = y,, is a
component of the electric dipole operator, writing the real and
imaginary components of the damped response function out in detail

Qaitt Ny = = % (0t )t 0Dy (5)

j
+ €011 )14 [0)Dy (= )
1[0t )l [0 (@5)
— Ol |04~ wp)| ) (364)

where the dispersion and absorption line-shape functions
Dj(£w) and A(£w) are given by

Dw) =—2 2
] ((Uj o w)z + Vz,
Di(—w) = _wte (365)
' () + @)* + 2
4
Ai(w) = y
/( ) (6()] . (1))2 + '}/Z
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Al - o) = m (366)

The dispersion and absorption line-shape functions are
plotted in Figure 1. We note that y determines the width of
the line-shape functions, in particular, 2y is the full width at
half-maximum for the Lorentzian absorption line-shape
function.

A plot of the real component of ((uithe))w, against wpg
describes a spectrum of (minus) the polarizability, also close to
resonance frequencies, where it has a physically correct disper-
sion shape D;. In contrast, the standard response function in
eq 278 diverges at resonance frequencies. The real part of the
damped response function thus provides a physically motivated
description of the polarizability at all frequencies, whereas the
standard response function is well behaved only in the non-
resonant region.

The imaginary part of {((Uqilla))w, plotted against wp de-
scribes an absorption spectrum with Lorentzian line-shape func-
tions A; superimposed on electric-dipole transition strengths
||(0(°)|,ua|j>|| %, We note that damped linear response functions
may be evaluated in any frequency interval to obtain the
corresponding absorption spectrum. Thus, damped response
theory enables direct determination of absorption spectra also
when application of standard response theory is difficult because
it would require determination of a large number of individual
transition dipole strengths, for examgle, in X-ray spectra and
absorption spectra of large molecules.”>

3.7.3. Higher Order Damped Response theory. For the
damped linear response function discussed above, introduction
of complex excitation energies is equivalent to introduction of
complex frequencies, see eq 362. Likewise, for higher order
response functions complex frequencies are effectively intro-
duced in accordance with eq 362 for each frequency that enters
the response function.*”® However, the fundamental symmetry
relations for higher order response functions, such as those in
eqs 284 and 285, are in general not conserved in higher order
damped response theory, as is the case in damped linear response
theory, see eq 363.

Introduction of damping in quadratic and higher order
response functions can be interpreted in a similar way as for
the polarizability in section 3.7.2, where one component de-
scribes dispersion and the other absorption. For example,
magnetic optical rotation (dispersion) and magnetic circular
dichroism (MCD) (absorption) are described by the imaginary
and real components, respectively, of the damped quadratic
response function Z(,ua;,uﬁ,m,,”wwo where m,, is a component of
the magnetic dipole operator,”* >® and two-photon absorption
(TPA) spectra can be obtained from a damped cubic response
function as described in ref 97. We note that, in general, the residue
spectrum of a conventional response function can be obtained
from the imaginary (or real in the case of an imaginary operator)
component of the corresponding damped response function.

4. RESPONSE THEORY FOR APPROXIMATE STATES

In this section, we use the variation principles developed in the
previous section to determine molecular response functions for
approximate wave functions. From these response functions
(and their poles and residues) we determine molecular proper-
ties for ground and excited states and transition matrix elements
between these states, where the ground state is represented by an

2y

— "\ | A

Figure 1. Dispersion D,(w) (left) and absorption A, (w) (right) line-
shape functions of damped response theory.

approximate wave function. For the variational Hartree—Fock
and MCSCF models in sections 4.1 and 4.2 we use the variation
principle for the time-averaged quasi-energy to determine the
response functions. For the nonvariational coupled-cluster mod-
el in section 4.3 we use the time-averaged Lagrangian to
determine the response functions. In section 4.3, we also describe
how response functions may be obtained for a coupled-cluster
wave function using the equation of motion formalism. Next, in
section 4.4 we consider Moller—Plesset perturbation theory, in
which only static ground-state properties can be calculated.

In sections 4.1—4.4 we focus on the theoretical formulation of
the wave function models mentioned above, where response
functions are obtained as perturbation strength derivatives of the
quasi-energy (or quasi-energy Lagrangian). Following the dis-
cussion of response functions for perturbation-dependent basis
sets in section 4.5 we give in section 4.6 an overview of
computational developments and implementations of response
methods in a historical perspective.

4.1. Hartree—Fock Theory

The general theoretical basis for carrying out response theory
at the SCF and MCSCF levels of theory was formulated by Olsen
and Jorgensen in 1985,” followed by implementations of the
linear,”® quadratic,” and cubic'®*'®" response functions in the
MO basis in the 1980s and 1990s. Since 2000, developments in
SCF response theory have been aimed at large molecular systems
and a reformulation of response equations and response func-
tions in the AQ basis'>'*'%*19%!*! ysing the elements of the AO
density matrix as variational parameters instead of the MO
coefficients. In the AO-based response formalism, all manipula-
tions are reduced to elementary matrix operations such as
additions and multiplications, making this formalism particularly
convenient for developing linear-scaling algorithms when sparse
matrix algebra can be applied.

Noting that the equations defining SCF response theory in the
MO basis may be obtained as a special case of the MCSCF
equations derived in section 4.2, we summarize in this section
the AO-based quasi-energy formulation by Thorvaldsen et al.'%
The main advantage of this formulation is that perturbation-
dependent basis sets (which may also depend on time) are an integral
part of the formulation, treating perturbations with perturbation-
dependent AOs (e.g., geometrical and magnetic perturbations
with atom-fixed London orbitals, see section 2.4) on the same
footing as perturbations where the field dependence is not
included in the AOs (e.g, electric-field perturbations). This
situation appears, for instance, when considering time-periodic
London atomic orbitals."”” Bearing in mind that DFT is not the
focus of this review, we here restrict ourselves to Hartree—Fock
theory but note that the same formulation applies to Kohn—
Sham theory with the additional inclusion of exchange-correla-
tion terms, which can be efliciently implemented and calculated
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using automatic differentiation techniques.'*® We also note that
the quasi-energy formulation by Thorvaldsen et al.'® has been
generalized to two- and four—comgonent wave functions in the
basis of four-component spinors.'”

4.1.1. Quasi-Energy Response Theory in a Density-
Matrix Formulation. In the quasi-energy of eq 165 only the
ket state is subject to time differentiation. The Hartree—Fock
quasi-energy is therefore not symmetric with respect to opera-
tions on the bra and ket states

Q(t) = (HF|H — i3,|HF) (367)
In particular, the second term in eq 367 may be evaluated as

(HF| — 0|HE) = —1 Y / 8106, 00,5 dr (368)
J

where the summation is over all occupied spin MOs (denoted
with index J), differentiating only the ket MO ¢;(r,t). In contrast,
the electron density

p(r, t) = X ¢/ (x, )¢, (x, 1) (369)
J
and its time derivative

p(l‘, t) - ;(‘l);(rl t)(P](r, t) + (l)}k (r) t)(/’](r; t)) (370)

are symmetric in ¢;*(r,t) and ¢;(rt). Given that the time-
derivative contribution to the quasi-energy in eq 368 contains
only the second term in the time-differentiated electron density,
it is not straightforward to express the quasi-energy in terms of
p(r,t) and p(x;t).

Let us now consider the matrix representation of p(r,t) in the
AO basis. By expanding the MOs in the AOs Y, which may
depend on the external (possibly time-dependent) perturbation
(see section 2.4)

¢](r, t) = Z Cm(t)xﬂ(f; t) (371)
u
we obtain
p(r, t) = 3, D, )%,(x, 1) (372)

where we introduced the one-electron density matrix in the AO
basis, D, whose elements are given by

Dn(t) = 3 G0 1) (373)

The time derivative of p(r,t) may thus be expressed in terms of
the time derivative of the density matrix

p(r, t) = Z (D#V)'(;(r, )%, (x, t) +D/4V).C;(rr t)Xv(r) t)

D5 7, (5, 1) (374)

with contributions from the density matrix as well as the AOs.
Even though the Hartree—Fock quasi-energy cannot be ex-

pressed in terms of p(r,t) and its time derivative (or, equivalently,

in terms of D and its time derivative) it is possible to express the

perturbation-strength derivative of the time-averaged Hartree—
Fock quasi-energy as a function of the density matrix D and its
time derivative D'*

d2 42D, D) _ 4. -
= = - oA, D 375
dn den (D, D) (375)

where the quasi-energy derivative 2%D,D) (whose explicit
form is given in section 4.1.2) contains all information needed
to determine the response functions by further differentia-
tion with respect to the perturbation strengths, similarly to
eqs 274276

d24(D, D)

(A; BYy, = Thg}:o; Wy = —Wp (376)

d*24(p, D)
A;B, Oy o = —— 2t
(4;B, Oy, wc depdec

Wy = — W — W¢ (377)

|{£}:01

and so on. The quasi-energy derivative .2*(D,D) therefore
provides an alternative starting point to the quasi-energy for
identifying response functions in terms of perturbed density
matrices. Extending the notation in eq 375, we write the
derivatives of a general function or matrix f in the manner
m
fBlu.B,yl _ d f (378)
dSBl...dSBm

n, By..B, rrf

f ~ 3(DT)"dep, ...0e5, (379)
with special cases f***» = 3"f/dep, .05 and f*°="f/d(D")".
In some cases, such derivatives are evaluated at zero perturbation
strength, but this will always be clear from the context.

4.1.2. Quasi-Energy Gradient. When working with general
time- and perturbation-dependent basis functions ,, it is con-
venient to introduce the generalized Hartree—Fock energy'®®

. A
E= tr<h +V + - G(D) —%T)D + o (380)

where h is the one-electron matrix without the external perturba-
tion, V is the perturbation matrix (e.g., an electric dipole matrix),
G(D) is the two-electron matrix containing Coulomb and
exchange contributions, T is an anti-Hermitian time-differen-
tiated overlap matrix

hu = Ol — %VZ - ; Zier o) (381)
Vi = Ol V()1 (382)
G,uV(D) = zﬁ; Dﬁa(g,uvuﬂ _g,uﬂav) (383)

Gy = //x;,(rl)xa(rz)xv(rl)xﬁ(rz) dr, dr, (384)

T/,w = <X/4|Xv> - <Z,u |XV> (385)
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while h,, is the nuclear repulsion term of eq 86. In the notation
of eqs 378 and 379, the quasi-energy gradient 2 * = 2 4(D,D)
may be written in terms of the partial derivatives of the general-
ized Hartree—Fock energy E®* and a reorthonormalization term
rSAW106

24 = B4 —ustw (386)

where E** is given by

(387)

1
E"4 = tr(hA + VA + EGA( ) — TA)DJrhﬁuc
because h®* = h* and so on. Note that in G*(D) only the two-
electron integrals g, are differentiated with respect to &4.
The $* matrix in eq 386 is the derivative of the AO overlap
matrix

S =t (388)
and W is a generalized energy- and frequency-weighted density
matrix

W = DFD + - (DSD DSD) (389)

where F is the generalized time-dependent Fock matrix
F:E1'°:h+G(D)+V—%T (390)

We note the close relationship between eq 386 and the molecular
gradient in the AO basis.'"® The main difference lies in the
inclusion of time-dependent terms in eq 386, where W is a
generalization of the energy-weighted density matrix.'"" Indeed,
the molecular gradient is recovered in the time-independent
limit, when the time-dependent terms (i.e., the terms involving T,
T, and the two last terms in W) vanish. If the perturbation A is
not described using perturbation-dependent basis sets, most of
the terms in eq 386 vanish and the following simple expression is
obtained

24 = r VD (391)

which represents the expectation value of the one-electron
perturbation operator

The quasi-energy gradient in eq 386 provides the starting
point for generating response functions by further differentiation,
according to eqs 376 and 377. However, before considering
response functions in section 4.1.4, we discuss the parametriza-
tion of the density matrix in section 4.1.3.

4.1.3. Perturbed Density Matrix. The density matrix for a
single-determinant Hartree—Fock state must satisfy the trace,
Hermiticity, and idempotency conditions

trDS = N (392)
D' =D (393)
DSD = D (394)

where N is the number of electrons in the molecular system.
Whereas the trace and Hermiticity conditions are automatically
satisfied in the formulation given below, the idempotency rela-
tion requires special attention. Furthermore, the time-dependent
density matrix must be a solution to the time-dependent SCF

(TDSCF) matrix equation106

(F —%sat) DS — (SDF + %Bt(SD)S) =0 (395)

which, in the absence of a time-dependent perturbation, reduces
to the usual Fock stationary conditions FDS = SDF of Hartree—
Fock theory.”® We note that eq 395 was also derived in ref 102
but without taking into account the possible perturbation and
time dependence of the AO basis functions.

The AO density matrix is now expanded in orders of the
perturbation

D =D, + DY + D? 4+ . (396)

where Dy is the optimized density matrix for the unperturbed
system (the subscript O here and elsewhere denoting the
unperturbed system) and where higher order density matrices
are written in terms of their frequency and operator components
following eq 218

DY = Y egDPe st (397)
B

D(z) _ 2 EBSCDBCe—i(wB+wC)t (398)
BC

The perturbed density matrices are partitioned into particular
and homogeneous components. 196 The particular component is
chosen such that the time-dependent density matrix satisfies the
idempotency relation, whereas the homogeneous component
ensures that the density matrix is a solution to the TDSCF
equation.

To illustrate this partitioning scheme, we consider the first-
order perturbed density matrix D® which we decompose into
particular and homogeneous components

D’ = D} + D} (399)

From eq 394 we find that the first-order idempotency relation is
the inhomogeneous equation

DS$;Dy + DoSD’ —D® = N®, N® = —Dos"D,  (400)

A particular solution DJ to this equation is given by

Dy = N®SyDy + DoSoN* —N* = —D(S°D, (401)

The homogeneous component DEis parametrized in terms of an
unknown matrix X* in the form

D} = DoSX” — X"S,Dy (402)

ensuring that Df is a solution to the homogeneous equation
associated with eq 400

D} SoDy + D¢SoDf, —DE = 0 (403)

In this way, it is ensured that D® in eq 399 satisfies the
idempotency relation to ﬁrst order. The matrix X® in the
homogeneous component Df; is now determined so that D” is
also a solution to the first-order TDSCF equation. Differentiating
eq 395 with respect to ke at zero perturbatlon strengths the
following equation for X” is obtained'*®

(Em - wBsm)xB — R? (404)
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where B! and $™/ are generalized Hessian and metric matrices,
respectively. As eq 404 is solved iteratively, it is not necessary to
construct these matrices explicitly; it is sufficient to know their
products with a general matrix X

EPX = G(XSyDy — DSoX)DoSy — SoDoG(XSoDy — DoSeX)
+ Fo(XSoDy — DSoX)Sy — So(XSoDy — DoSoX)Fo (405)

SPX = 8,(XSoDy — DoSeX)S, (406)

where Fy is the Fock matrix of the unperturbed system. The right-
hand-side matrix of the response equation in eq 404 is given by

R® = [E"*® + E> °(D})|DoSo + (FO —%SO (DESy + DoS?)

— 8D [E" ® + E> °(D})] — (SoDj + $"Dy) (Fo — %so>
(407)

We note that the particular component Df only depends on the
zero-order density matrix D, whereas the homogeneous com-
ponent D} requires solution of the response equation in eq 404.

The first-order analysis given above may be generalized to
arbitrary orders, decomposing the mth-order density matrix into
particular and homogeneous components

DBI...B,,, _ DgL..Bm + DEI‘WBM (408)

The mth-order idempotency condition can be written in the form
DFBrSD, + DySDPBr — DBBr — NBi-Bn (409)

where the inhomogeneity N contains perturbed density
matrices of order less than m. A particular solution Dp"" to
eq 409 is given by

Dg,...Bm — NBI"'B'"SQDO + DoSONBl'"Bm _NBI-”Bm (410)

Note that DE*®» has the same structure as the first-order
particular density matrix Dj in eq 401. The mth-order homo-
geneous component Diy P is parametrized as in eq 402

DB-Bn — P SxPiBr — xBr-BugDy 411
H

where X®?" is determined so that the total density matrix in
eq 408 satisfies the TDSCF equation to order m by solving the
mth-order response equation

EY — (wp, + ... + wp, )SHXB-Bn — RE-Br (412)

This equation has the same form as the first-order equation in
eq 404, with R”"*" containing only lower order density matrices.
Since the response equations have the same structure to all
orders they can be determined using the same solver, for
example, the linear-scaling solver of Coriani et al, ' making the
formulation suitable for large molecular systems. We note that
the partitioning of the density matrix presented here, where one
component is a solution to the idempotency relation and
another component solves the TDSCF equation, was first
developed and implemented for molecular Hessians and mag-
netizabilities by Larsen et al.'*>

In summary, to determine the mth-order density matrices
D" we first construct the mth-order inhomogeneity N**»
from lower order density matrices and determine the particular
solutions D55, Next, the right-hand sides RZB» are con-
structed from DP"®" and from lower order density matrices

followed by solution of the mth-order response equations to yield
XPP» and the homogeneous components Df{". Finally,
D®P» is determined according to eq 408. We have thus
established a recursive procedure for determining perturbed
density matrices to arbitrary order, where perturbation-de-
pendent basis sets are an integrated part of the formulation.
With the perturbed density matrices at hand it is straightfor-
ward to evaluate response functions, as discussed in the next
subsection.

4.1.4. Response Functions. Response functions may be
identified by differentiation of the quasi-energy gradient in eq 386
according to eqs 376 and 377. In the notation of eq 379 the derivative
of the first term in eq 386 at zero interaction strength may be written
as

dEO,A
dEB o 383

. 0E> 4 9D
r -
aDT 883

aEO, A

— E%4B 4 ¢ ELADP

(413)

Including also the derivative of the second term in eq 386 we obtain
the following expression for the linear response function

(A;BY),, = 2% = E**® + ¢ E"“D? — tr $*W, — tr S*W?
(414)
According to eq 390 the differentiated Fock matrix becomes

B4 = FO4 = b+ GM(Do) + VAT (415)

and using eq 389 the W matrices are given by
Wo = DOFODO (416)

w (03]
W2 = D,F®D, + D? (Fg + TBSO) Do + D (FO - TBSO) D?
(417)

Although not immediately apparent from the expression in eq 414,
the linear response function satisfies the general symmetry relation in
eq 283. When the basis set does not depend on the external
perturbations A and B only the contribution involving V* in the
second term of eq 414 remains, reducing the linear response function
to the simple expression

{(4;B)),, = tr VD" (418)

also obtained by Larsen et al.'>*
The quadratic response function in eq 377 is given by'%

{A5B, Oy 0o = _OABC _ 0, ABC
+t(EB" D" + E" "D + E* 4(D")DC + 2B D)
—u($*Wo + S WP 4 $PWE 4 5w (419)

where the first-order densi?f matrices D® and D€ and the second-
order density matrices D®C are required to determine the quad-
ratic response function. We also note that E**(D”) corresponds
to the two-electron matrix in 383 with differentiated two-electron
integrals. It is possible to obtain an expression for {((4;B,C))e, e
that complies with the 2n + 1 rule so that only first-order density
matrices D%, D?, and D€ are required; see ref 106 for details.

4.2. Multiconfigurational Self-Consistent Field Theory
The multiconfigurational self-consistent field (MCSCF)
model*>""*"* is a highly flexible electronic-structure model,
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well suited to systems not dominated by a single electronic
configuration, for example, the ground-state ozone molecule,
molecular dissociation processes, and symmetry-forbidden reac-
tions. With its flexible multiconfigurational ansatz the MCSCF
model is able to recover the static correlation necessary for a
qualitatively correct description of such systems; for a quantita-
tively correct description some correction for dynamic correla-
tion is also necessary, as can be achieved by perturbation theory
(e.g, second-order complete-active-space perturbation theory,
CASPT2,'"® or second-order n-electron valence-state perturba-
tion theory, NEVPT2'') or by a multireference configuration
interaction (MRCI)"'* treatment. In the following, we discuss
the calculation of molecular properties for the MCSCF model,
restricting ourselves to linear response theory.

4.2.1. MCSCF Quasi-Energy. In terms of the unperturbed
MCSCEF reference state [MC), the regular time—d%pendent
MCSCF wave function [MC) may be parametrized as”

|1\’,[‘6> — i¥(6)iS(t) |MC) (420)

where |MC) is a linear combination of Slater determinants and
Kk(t) and S(t) are Hermitian orbital-rotation and state-rotation
operators, respectively

k() = X (u(t)g, + <u(6)q0) (421)
u
S(t) = X (Su(OR, + S, (t)R,) (422)

n

Here ic(t) is expressed in terms of the orbital-excitation operators
q,, corresponding to the singlet and triplet excitation operators in
eqs 97—100, where i is a compound MO index for orbital
excitations. The state-transfer operator S(t) is expressed in terms
of the operators

Rl = [nXMC| (423)

where the |n) states span the orthogonal complement of the
MCSCF reference state |[MC). The reference state |MC) is
determined by variationally optimizing the expectation value of
the unperturbed Hamiltonian H,, with respect to the orbital- and
state-rotation parameters,”” yielding the Brillouin conditions

(MC|[Ho, q,][MC) = 0 (424)

(MC|[H,, RI]IMC) = 0 (425)

Because of the exponential parametrization in eq 420 the time-
dependent MCSCF wave function is normalized by construction
and it is not necessary to impose a normalization constraint. In
this parametrization we introduce the time-averaged MCSCF
quasi-energy

2 = {(MC|H — i3, MC)}
= {(MC e S0 (g — i0; el (0)iS(0) MC) 426
T

where the time-dependent orbital- and state-rotation parameters
are determined by optimizing .2 variationally

02 =0 (427)

In the following, we derive the MCSCEF linear response function;
for higher order response functions, see ref 70.
4.2.2. Second-Order MCSCF Quasi-Energy. The orbital-

and state-rotation operators may be expanded in orders

of the perturbation

k() = «V(E) + «@(t) + ... (428)

S() = sV + sP(t) + ... (429)

where the zero-order parameters vanish because the reference
wave function |MC) is variationally optimized for the unper-
turbed system. Since the MCSCF quasi-energy is determined
variationally, only the first-order response parameters are needed
for the linear response function studied here, following the 21 + 1
rule. The first-order operators may be expanded in terms of their
frequency and operator components (similarly to the expansion
in eq 218)

k(1) = Y egleiont (430)
B

SW(t) = Y epSheiont (431)
B

where B is a combined operator—frequency index. The operators
k® and S are written in terms of the parameters Kﬁ and S,
(equivalently to the expression in the time domain in eqs 421 and

422) as

=y (Kﬁq,i + K,;B*‘IM> (432)
"
8 =Y (SER! + S, %'R,) (433)

n

The paired structure of k” with respect to the B and — B indices in
eq 432 ensures that x °" = ® such that (1)(1‘) is Hermitian (and
likewise for the S operators).

We now expand the MCSCF quasi-energy in orders of the
perturbation

2=20 4 o0 4 0@ 4 | (434)

Limiting ourselves to linear response theory, we need only
consider the MCSCF quasi-energy up to second order. The
zero-order quasi-energy is simply the MCSCF energy

20 — (MC|H,|MC) (435)

Because of the 2n + 1 rule, first-order parameters do not
contribute to the first-order quasi-energy, which reduces to a
sum of simple expectation values. Furthermore, upon time
averaging, only static terms in V(t) contribute to the first-order
MCSCEF quasi-energy

oW = {(MC| Y eBVBei‘“Bt|MC)}
B
T

= Y &x(MC|V3MC) (436)

B:wg =0

To determine the second-order MCSCF quasi-energy

0l _ {(Mc|e—i5(t)e—i|<(t) (H - iat)eiK(t)eiS(t)|MC>}(2)
T
(437)
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we invoke the Baker—Campbell—Hausdorff (BCH) expansion

¢ ABer — B + [B, 4] + %[[B, Al 4] + %[[[B, A Al Al + .

(438)

to write the part of 2@

V(t) in the form

{iciMEN = el (i[ve, sV + V(o)

containing the Hamiltonian H = Hy +

1

[ [Ho 0], V@] =3[ [Ho V@], sV 0]

N % { [HO) K(1>(t)}; K(l)@} ) |MC>} (439)

T

where the terms involving second-order rotation parameters
vanish by the 2n + 1 rule. Likewise, using the commutator
relation [9, X] = X fora general operator X we find that the time-
derivative term in eq 437 becomes

{(M‘a - ia,\ﬁa}f)

— { _1<MC|(_%[3(1>’ S(l)] _%[ku), K(l)]

- [W, S(I)D |MC)} (440)

The second-order quasi-energy may be written in terms of the
different frequencies and perturbations as

2(2) = Z 831832_93132, wWpg, + Wp, = 0 (441)
By, B,
where 2 %% = 2PP and the frequency condition excludes
contributions that in any case vanish upon time averaging.
Let us now consider one particular nonvanishing component
of the second-order quasi-energy .2 @

1 @o®

EgBle —
2 dSB] dSB2

(442)
obtained by differentiation of eqs 439 and 440 with respect to &5,

and &g . From the first term in eq 439 we obtain

a{ve|[sM () + kW (D), V(H)]MC)}
o ngldeBz

_ —i{((MC|[SBl + KB, V] [MC)

+(MC|[$™ + K™, Vi, | IMC))e om *om)i]
T

= —2iP, 5 (MC|[S" + ¥, V5, ]IMC) (443)
where Py5] averages over permutations, see eq 222. To

express eq 443 in a compact manner, we introduce the col-
umn vectors % and T* containing the first-order orbital- and

state-rotation parameters and the corresponding operators,
respectively

K5 q
B B

ﬁB = 4 x| = s * T = ) = R

7" A ¢ q"

s R'
(444)

Noting that the conjugate row vectors
B = (rl‘B* 113): (k75" s «* sP)

(445)
T=(¢ t)=(q" R q R) (446)

contain the same elements as the column vectors 8% and T* (but
reordered) we may write S + k”* of eqs 432 and 433 in the
following two equivalent forms

st 4+ kP =1 = gt (447)
Returning to eq 443, we now obtain
— 2iPy, y(MC|[$™ + x™, V3, |[MC)

= — ZiP[l, Z]ﬁ_Bl+<MC| [T"’, VBZ} |MC>

= —2iPy 3B BV} (448)
where we introduced the column vector
Vi = (MC|[T", Vi, ] |MC) (449)

Likewise, we obtain after some algebra the following expression
for the remaining terms in eq 439
dZ

dEBld(‘)BZ

+3[[Ho s, 00 Mo

1
2

{(MC| HHO, K“)(t)], s<1>(t)] + HHO, s<1>(t)}, sm(t)}

= — 2Py, 5(MC|[[Ho, "], §*]
+%HH0, SBIL SBZ] + %HHO; KB‘], KBZ] IMC)
= Py, 5{MC| [[KB‘, Ho], SBZ] + [SBI, [HO, KBZH
+ [$%, [Ho, S]] + [«*, [Ho, x®]]IMC)
= Py, B "EPI®: (450)

Here we introduced the electronic Hessian E/ , which in terms
of the matrices

A — [ MCllg, [Ho, q'IIMC)  (MCI[lq, Ho], R']IMC)
— \(MCI[R, [Ho, q"]]MC) (MCI[R, [Ho, RT]]]MC)
(451)
B J—

(MCl[q, [Ho, q]]IMC) (MC][[q, Ho, R]]|MC)
(MC|[R, [H,, q]][MC) (MCI[R, [Ho, R]]|MC)

(452)
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may be written in block-matrix form”™ (using an asterisk to
denote complex conjugation but not transposition)

A B
EY = (B* A*> (453)

The Hessian E') is Hermitian, as follows from the Hermiticity of
A and symmetry of B

A=A", B=B8" (454)

assuming that the Brillouin conditions in eq 425 hold. Combin-
ing eqs 448 and 450 we find that the Hamiltonian part of the
second-order quasi-energy £ @ in eq 439 becomes

d2{<ﬁ6|H\ME>}f)

dé’B1 d832

1
— 2P {— gV 4 Eﬁ‘B'*EmﬁBz (455)

for a specific set of operator—frequency indices (B,,B,).

It remains to consider the part of the second-order quasi-
energy that contains the time derivative in eq 440. Noting that
the time derivatives of the first-order parameters in eqs 430 and
431 are given by

KW(1) = —1 Y wpepk® e s (456)
B

SW(t) = —i Y wpepS®e ! (457)
B

we obtain upon time differentiation of eq 440 with respect to &5,
and €5, the expression

&{(MC| —i3,[]MC)},
nglng;_

= 2P|, ywp, (MC|[® 4+ %, k™ + §%]|MC)
= — Py 2]Cl)Bzﬂ_B”S[2]ﬂB2 (458)
To obtain the first equality of eq 458 we used the relation
2P, ywp, (MC| [, §%]|MC)
= 2P);, ywp, (MC|[S", k™ ]|MC) (459)

while for the second equality we used eq 447, the frequency
relation wp = —wg , and introduced the Hermitian metric matrix

sP = (mc|[T", T]IMC) = (_EA* _AZ*> (460)

whose submatrices

(MCl[q, q'IIMC)  (MC|[q, R]|MC)
X = ((MCI[R, q']]MC) (MCJ[R, R*]lMC)) (461)

_ [ MC][q, q]IMC) (MC|[q, R]IMC)
A= <<Mc|[R, QMC) (MC|[R, R]|Mc>> (462)

579

are Hermitian and antisymmetric, respectively
=3 A= —AT (463)

Combining eqs 455 and 458 we find that the (B,,B,) component
of the second-order MCSCF quasi-energy of eq 442 becomes

1

OBiB: _ Py ) ( _ jﬂ—Banl] + iﬁ—lsm (E[z] _ szs[z])ﬂBz)

B (5 o))

2
(464)

where we used the paired structure of the Hermitian matrices
E® and 8% in egs 453 and 460 and the relation wg = —wp, to
arrive at the last expression. In the next subsection we shall use
this expression to derive the first-order MCSCF response
equation.

4.2.3. First-Order MCSCF Response Equation. According
to the quasi-energy variation principle in eq 427, the quasi-energy
must be stationary to all orders with respect to variations in all
frequency and operator components. In particular, the second-
order quasi-energy component .2 must be stationary with
respect to variations in ﬁfB”L

dom P

From eq 464 it then follows that the first-order variations satisfy
the set of linear equations

(Em - a)BZsP])ﬁBZ = v} (466)

which is our final result for the MCSCF linear response
equations. We note that if all matrix blocks involving state-
transfer operators are removed then eq 466 reduces to the
Hartree—Fock linear response equations in the MO basis, the
MO counterpart to the response equations in the AO basis in
eq 404.

4.2.4. Linear MCSCF Response Function. The MCSCF
linear response function ((A;B)),, is equal to the second
derivative of the time-averaged quasi-energy with respect to
the perturbation strengths &4 and &g Using eqs 441 and 464
we thus obtain the following expression for the linear response
function

<<A B>> — dzg(z) _ wAB _ _ iﬂ—A‘?‘V[l] o iﬁ_BTV[l]
' @B dSAdSB B A
+ﬁ—A‘f (E[Z] - wBS[Z])ﬂBI wp = — Wp

(467)

By inserting the response equations in eq 466 or in the equivalent
equations for perturbation A, the MCSCF linear response
function may be written in two alternative forms, in accordance
with the general symmetry relations in eq 283

(A B, = —iB "V = —if V]
= ((B;A)),,, 04 = —wp (468)

When the matrix blocks involving state-transfer operators are
omitted, eq 468 reduces to the Hartree—Fock linear response
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function in the MO representation, which is the MO counter-
part of the AO-based expression in eq 418. The MCSCF
quadratic and cubic response functions are obtained by
differentiation of the third- and fourth-order quasi-energies,
respectively. For a detailed treatment of higher order response
functions, see ref 70 as well as the papers describing the
implementation of the MCSCF quadratic®® and cubic'®'
response functions.

4.3. Coupled-Cluster Theory
Coupled-cluster theory®>'"” provides the most successful
framework so far developed for high-accuracy calculations of
the electronic structure and properties of molecules. The theory
describes the system in terms of virtual excitations from a
reference state, typically taken to be the Hartree—Fock wave
function. Using an exponential ansatz for the wave function, a
size-extensive description is achieved. The full configuration-
interaction (FCI) wave function is approached as increasingly
higher order excitations are included in the treatment of the
system.

In this section, we present a framework for evaluation of
molecular properties in coupled-cluster theory, based on con-
struction of a variational Lagrangian. In the development
presented here, we restrict ourselves to the standard formula-
tion of coupled-cluster theory, where the Hartree—Fock state is
a good approximation to the reference state. These coupled-
cluster models are thus not sufficiently flexible to describe elec-
tronic structures characterized by large static correlation effects.
Typically, therefore, these models cannot describe bond break-
ing and molecular dissociation. We do not treat multiconfigura-
tional coupled-cluster theory nor explicitly correlated coupled-
cluster theory. Such formulations of coupled-cluster theory are
becoming increasingly important but have so far not been
extensively developed with respect to calculation of molecular
properties.

4.3.1. Coupled-Cluster Model. In coupled-cluster theory
the wave function is written in the form

|CC) = exp(T)|HF) (469)

where [HF) is the Hartree—Fock reference state and the cluster
operator is given by

T= Y ta, (470)
u

The operator manifold 7, constitutes a set of commuting
excitation operators

[T, Tv] = 0 (471)

which, when working on the Hartree—Fock reference state,
generate excited electronic configurations

7, [HF) = |w) (472)
In practice, the cluster operator is partitioned as

T=T +T, + .. (473)

where T produces single excitations, T, double excitations, and
S0 on

T, = Y tlala (474)
Al

T= Y Xt aiaay (475)

A>BI>]

With each excitation operator 7,, in eq 470 there is an associated
coupled-cluster amplitude f, whose squared value is propor-
tional to the probability of the associated virtual excitation
occurring.

The amplitudes of the coupled-cluster wave function in eq 469
are not determined variationally. Rather, they are determined by
projection, rewriting the Schrodinger equation in the form

exp( — T)Hy exp(T)|[HF) = Ecc|HF) (476)

This similarity-transformed Schrodinger equation is subse-
quently projected from the left by the manifold

— +
(u| = (HF[z] (477)
to yield the nonlinear coupled-cluster amplitude equations
(ulexp( — T)H, exp(T)|HF) = 0 (478)

whose solution yields the coupled-cluster amplitudes and wave
function. Furthermore, projecting the Schrodinger equation in
eq 476 against the Hartree—Fock state we obtain the coupled-
cluster energy

Ecc = (HF| exp( — T)Ho exp(T)|HF) (479)

In coupled-cluster theory, the energy is thus not calculated as an
expectation value.

The different models of the coupled-cluster hierarchy differ
in the truncation of the coupled-cluster operator T of eq 470.
In particular, the coupled-cluster singles—doubles (CCSD)
model''® is obtained by truncating the expansion after the double
excitations

|CCSD) = exp(T, + T,)|HF) (480)

The CCSD amplitude equations are obtained from eq 478 by
projecting against the single {u;| and double {u,| excitation
space. Using the BCH expansion in eq 438, we obtain the
following equations for the singles and doubles amplitudes

(u,|HI + [HOTI, Tz} IHE) = 0 (481)

1
</12|Hgl + [HOTl, Tz} + iHHOTI, Tz}, Tz] |HF>: 0
(482)
where we introduced the T-transformed Hamiltonian
H]" = exp(— T1)Hy exp(T}) (483)

Alternatively, we may truncate the cluster operator after the
triple excitations, givin§ the coupled-cluster single—double—
triple (CCSDT) model."'*'*° Optimization of the CCSD energy
scales as n° and of the CCSDT energy as n®, where n is the
number of orbitals. The high cost of the optimization makes the
coupled-cluster hierarchy applicable only at low levels of theory.
On the other hand, the coupled-cluster hierarchy converges
rapidly to the FCI electronic energy, at least in the absence of
static correlation.

In coupled-cluster theory, the scaling of each model is
determined by the scaling of the amplitude equations for the
highest excitations, for example, the n® scaling of the CCSD
model arises from the last two terms of the doubles equations in
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eq 482. As the contribution to the correlation energy decreases
with increasing excitation levels, it makes sense to introduce an
intermediate coupled-cluster hierarchy of a lower scaling by
making approximations in the highest excitation amplitude
equations. For this purpose, we introduce the Moller—Plesset
partitioning of the Hamiltonian

Hy=F+U (484)

where Fis the (zero-order) Fock operator and U the (first-order)
fluctuation potential, representing the difference between the
true electron—electron interactions and the averaged Fock
potential. A hierarchy of intermediate coupled-cluster models
is now introduced by approximating the highest excitation
amplitude equations by retaining only the leading terms of
Moller—Plesset theory, keeping the lower excitation amplitude
equations unchanged. In the CC2 model,"*! for example, we
keep the CCSD singles equations eq 481, whereas the CCSD
doubles equations in eq 482 are approximated by the lowest
order Moller—Plesset terms

(u|Hy' + [F, T]|HE) = 0 (485)

thereby reducing the scaling to n°. Likewise, by approximating
the CCSDT triples equations in the same manner we obtain the
CC3 model,'**'** with an n” rather than n® scaling. Note that in
the resulting coupled-cluster response hierarchy consisting of the
models CC2, CCSD, CC3, CCSDT, the cluster amplitudes are
determined iteratively by solving nonlinear amplitude equations
and the scaling increases by a factor of n at each level in the
hierarchy.

A simpler coupled-cluster hierarchy is generated if, for each
intermediate model, the contributions from the highest order
excitations are calculated from perturbation theory rather than
iteratively. The CC2 model then reduces to the second-order
Moller—Plesset (MP2) model by setting the #; amplitudes to
zero, that is, by omitting the singles amplitude equation and
determining the doubles amplitudes from eq 485 where the T1-
transformed Hamiltonian H, " is replaced by H.

In coupled-cluster theory, the triple excitations give contribu-
tions to the energy of orders four and higher in the fluctuation
potential. In the perturbation-based intermediate model ob-
tained from CCSDT theory, this fourth-order energy contribu-
tion is added (in a slightly modified form) to the CCSD energy,
yielding the coupled-cluster singles—doubles—perturbative-
triples (CCSD(T)) model."** Proceeding in this manner, we
generate the coupled-cluster energy hierarchy consisting of the
models MP2, CCSD, CCSD(T), CCSDT, with the same com-
putational scaling as the coupled-cluster response hierarchy
introduced above. Note that, in the energy hierarchy, the highest
order contributions of the intermediate models are treated
perturbatively rather than iteratively, thereby reducing the cost
of the calculations relative to that of the response hierarchy.

In response theory, molecular properties are determined for
ground and excited states and for transitions between these
states. To apply response theory successfully, we therefore need
to have a good zero-order description of these states. As most
excited states are dominated by a single excitation from the
ground-state configuration, response theory can only be applied
confidently for electronic-structure models where single excita-
tions are explicitly treated. In the MP2 model, single excita-
tions do not contribute; consequently, this model does not con-
stitute a useful starting point for determining molecular response

functions. Likewise, in the CCSD(T) model, there is no direct
interaction between the triple- and single-excitation spaces; the
CCSD(T) model therefore also does not constitute a useful
starting point for a response treatment. By contrast, in the
intermediate models of the coupled-cluster response hierarchy
the equation for the single excitations is not truncated, making
these models suitable for response-function calculations.

Even though the intermediate models in the coupled-cluster
energy hierarchy do not provide a sufficiently flexible description
of single excitations for molecular properties, it is possible to
improve the description by allowing the orbitals to relax, thereby
effectively introducing single excitations. However, when re-
sponse functions are determined with orbital relaxation included,
the orbital-rotation parameters and amplitudes introduce singu-
larities in the response function, rendering the pole and residue
analysis problematic. Hence, only static molecular properties can
be meaningfully obtained for models with orbital relaxation
included. The static molecular properties obtained in this
manner may be viewed as an analytic formulation of a finite-field
energy determined in the presence of the perturbation, see
section 4.4, where we describe how static molecular properties
may be determined with orbital relaxation included. In the
remainder of this section we consider time-dependent perturba-
tions, thereby restricting ourselves to the coupled-cluster re-
sponse hierarchy of wave functions.

4.3.2. Coupled-Cluster Quasi-Energy Lagrangian. In
section 3 we set up a time-averaged quasi-energy Lagrangian
for an intermediately normalized wave function, suitable for
coupled-cluster theory. In the following, the optimized
coupled-cluster wave function for the unperturbed system in
eq 469 is written as

CC) = exp(T®)HE) (456)
By applying eq 193 with the identifications
IR) = [HF) (487)
0y = o) (488)
10) = |CC()) = exp(T(t))[HE) (489)
O = Xa@®@®)] = X ltwlep(=T(6)  (490)
u u

and noting that (6|6) = 0 as assumed in the derivation of eq 193,
we obtain the coupled-cluster quasi-energy Lagrangian66

= Re{<HFH|cc<t>> Y ReEH - mAC%»}

u

(491)
with H = Hy + V(t), applicable to the standard hierarchy of
coupled-cluster models CCS, CCSD, CCSDT, and so on. We
note that the Lagrangian / is the time-averaged sum of the
coupled-cluster quasi-energy Q(f) and the (real part of the)

time-dependent coupled-cluster amplitude equations with as-
sociated multipliers

Q(t) = Re(HF|H|CC(t)) (492)
@(t)|H —i9;|CC(t)y = 0 (493)
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which are the coupled-cluster analogues of the expressions for
exact theory in eqs 183 and 187. For later convenience, we also
introduce the time-averaged complex quasi-energy Lagrangian

s {(HF|H|CC (1)) + Zt,, t)a(t H—i8t|CC(t)>}

T
(494)

such that
/= Re (495)

For the intermediate CCn models, the Lagrangian in eq 491 must
be modified as discussed in section 4.3.6.

The cluster amplitudes and multipliers are now expanded in
orders of the perturbation

T(t) = TO + TV + TO®) + ... (496)

) =70 + 70 + 7O + ... (497)

where the zero-order cluster amplitudes are obtained by solving
the amplitude equations in eq 478 and the zero-order multipliers
are obtained as described in section 4.3.3. Likewise, the real-
valued and complex quasi-energy Lagrangians are expanded in
orders of the perturbation

»;//) — »Z”)(O) + »/)(1) + »://)(2> + (498)

»X)C — »ZJC«)) 4 »ZJC(I) 4 »\'//)C(Z) 4o (499)

We here restrict ourselves to determining ./ )(0), N )(1), and ./ ~(2) ;
the latter will allow us to calculate the coupled-cluster linear
response function. By the 21 + 1 and 21 + 2 rules we then need to
determine the first-order amplitudes and zero-order multipliers.
For future reference, we write the first-order amplitude operator
in terms of its frequency components

TW(t Z ep TS e st (500)

where T4 contains the first-order cluster amplitudes

T = % 7, (501)

and where B is a combined operator—frequency index.
4.3.3. First-Order Molecular Properties. By analogy with
eq 311, the zero-order coupled-cluster Lagrangian becomes
7O = Re(AY|Hy|CC?) = Ecc (502)
where we mtroduced the zero-order coupled-cluster wave func-

tion |CC )Y of eq 486 and, by analogy with eq 320, the zero-
order coupled-cluster lambda state

O = (HE| + X E0@
u

@ = (ulexp(— 1) (503)

The stationary conditions for the zero-order Lagrange multi-
pliers give the coupled-cluster amplitude equations, while

the stationary conditions for the amplitudes determine the
zero-order multipliers

d/)c(o)

m

df)C(O)

G = AOlHo 7Jlcc®) = o (s0s)
"

Whereas eq 504 is the cluster amplitude equation in eq 478, the
linear equations in eq 50S determine the zero-order multipliers
and may be written in the form

A = —p (506)

where A is the nonsymmetric Jacobian matrix and 7 a row
vector

Aw = (@|[Ho, T]|CC”) (507)
= (HEF|[Ho, 7,]|CC) (508)

According to the 21 + 1 and 2n + 2 rules for the wave function
parameters and multipliers, respectively, the first-order molecu-
lar properties may be written as

: 1
7Y = Eci<A<°>|VBO|CC<°)>, wp, = 0 (509)
by analogy with eq 312.

4.3.4. Second-Order Molecular Properties. According to
the 2n + 1 and 2n + 2 rules, the second-order coupled-cluster
Lagrangian 7@ may be constructed from the first-order ampli-
tudes and the zero-order multi z[;hers Using the expansion in

eq 302 we now consider the /) '5 component. To this end, we
note that
|CC(£)) = exp(T(¢))[HE)

= exp(T(t) — T(O))\CC(0)> (510)

(ulexp(T (1)) = (@lexp(T —1(1)) (s11)

and apply the BCH expansion in eq 438 to expand the quasi-
energy Lagrangian in eq 491, yielding

‘77 1
s =5CPo (<A(°)| [VBM Tfﬂ lccl

0

+(AO) HHO Tg”}, T,gﬂ |cc<°>>) (512)

where we also used eq 471. Next, by inserting the expression for
T( ) in eq 501 and introducing the notation

e = (AV|[Va,, 7.]lcc®) (513)

Fuw = (AV|[[H,, 7,), 7,]]CC?) (514)
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(where F should not be confused with the Fock matrix), we may
express the second-order Lagrangian more compactly as

(2)
> By, B

1
= ECiP[O’ 1] <Z nﬁotﬁl + Z Fﬂvtgotfl>
u uv
(515)

Finally, using eq 307 we arrive at the following expression for the
coupled-cluster linear response function

((4;B)),, = C*Pyy g (2 b + Y, FM,‘)tf) (S16)
u

uv

where we adopted the standard response notation, renaming Vj_
and Vg to A and B, respectively.

In the coupled-cluster response function of eq 516, the zero-
order multipliers are obtained from eq 506 while the first-order
amplitudes are determined by solving eq 493 to first order. To
obtain an explicit expression for the amplitude equations it is
convenient to rewrite eq 493 in the form

(@lexp(T® — T(t))(Ho + V() 7i3t)exp(T(t) - T<°>)|cc<°>> 0
(517)

where we used eqs 510 and 511. By invoking the BCH expansion
eq 438 in eq 517 and collecting first-order terms followed by
differentiation with respect to a particular perturbation strength
&p, we obtain an equation for the first-order amplitudes

Y (@|[Ho, 7,]|CCO¥ee 4 (@] v, |CC)

—wp, Y, {@lm,|cC =0 (518)
By introducing
& = (@lvi|cc) (519)
and noting that
@z, |cCVy = (ulvy = O, (520)
we find that eq 518 may be written in the matrix form
(A — wp, Dt = — & (s21)

The response function and response equations developed above
may be applied to the standard coupled-cluster models (CCS,
CCSD, CCSDT, etc.) by introducing the appropriate truncations
in the cluster operator and in the projection manifold.

4.3.5. Excitation Energies and Residues. Excitation en-
ergies correspond to the poles of the linear response function and
may be determined by solving the Jacobian eigenvalue equation.
Since the Jacobian is nonsymmetric, we have left and right
eigenvalue equations

ARF = o Rf, LFA = Lfo,, L'R! = oy (522)
where L* is a left row eigenvector and R is a right column
eigenvector. In matrix form we may express the Jacobian
eigenvalue problem as

LAR = Q, LR =1 (523)

583

where the diagonal matrix € contains the excitation energies.
When all virtual excitations within a given orbital basis are included
in T in eq 473, the Jacobian has the same real eigenvalues as the
shifted Hamiltonian operator Hy — Ecc. Conversely, when T is
truncated, the nonsymmetric Jacobian may have complex eigenva-
lues or even not be diagonalizable. Complex eigenvalues (and hence
complex excitation energies) are unphysical and may occur because
the coupled-cluster method is nonvariational. However, such eigen-
values are usually not encountered for electronic systems dominated
by a single determinant and may always be removed by extending
the excitation manifold.

Assuming that a diagonal representation exists, the linear
response function in eq 516 may be expressed as

(A;B)),, = C*P it L ‘5 Fa'E
e = = HlaH z,:‘ o —wp %‘ (05 + wp)(0p — W)
(524)
where
i = n'R* (525)
‘g =g (526)
F, = (RY)TFR! (527)

In agreement with the response function for exact states in eq 278
the coupled-cluster linear response function has poles at
wgp = ;. In addition, the coupled-cluster response function
has an F-dependent term, not present in eq 278. This term
vanishes in the limit of a full excitation manifold, as discussed in
ref 125.

In coupled-cluster theory, transition strengths may be deter-
mined from the residue of the linear response function

. 1 1 .

im0 — oA ), = ST + MThTh) (529)
where

Th = &0, T4 =t + B (- o), (529)

Unlike for variational methods, T # (T4o)*. However, as for
exact states, the transition-strength matrix is Hermitian. The
diagonal element of the transition-strength matrix (1/2) T4 T+
(1/2)(T5:THo)* is therefore real. However, since the tran-
sition strength matrix element is not a squared norm as in
exact theory, it is not guaranteed to be positive. Again, this
does not give any problems, in practice, when the coupled-
cluster wave function is a good representation of the exact
wave function.

4.3.6. Response Functions for the CCn Models. The
response functions for the intermediate CCn models differ from
those for the full coupled-cluster models discussed above. To
illustrate this, we consider here the CC2 model, for which
thlezgime—dependent amplitude equations in eq 493 may be written
as

(u,|H" + [H, T,]|HF) —if,, = 0 (530)

(U|H™ + [F + VT (t), T,]|HF) —it,, = 0 (531)

which are the time-dependent analogues of the CCSD singles
equation in eq 481 and the CC2 doubles equation in eq 485,
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respectively. The CC2 version of the quasi-energy Lagrangian in
eq 491 may therefore be written in the form

7= Re{<HFH exp(Ty + T,)[HF)
T
It

+ X8 (GlHT & F £ VI, THE) i)
My T
(532)

The quasi-energy Lagrangian is stationary with respect to variations
in the cluster amplitudes and multipliers. This condition may be
used to determine an order expansion of the cluster amplitudes and
multipliers, and the CC2 molecular response functions may subse-
quently be obtained by differentiating the quasi-energy Lagrangian
as in eqs 307—309. The CC2 linear response function was first
derived in ref 121, whereas the first derivation of the CC3 linear
response function was given in ref 122.

4.3.7. Equation of Motion Coupled-Cluster Method. As
an alternative to coupled-cluster response theory, molecular
properties may be calculated using the equation of motion
coupled-cluster (EOM-CC) method."**"*” In EOM-CC theory
it is assumed that a coupled-cluster ground-state wave function
has been determined that satisfies the cluster amplitude equa-
tions of eq 478 and has the energy Ecc of eq 479. However,
unlike in response theory, no time-dependent wave function or
equations are introduced. Instead, excitation energies and ex-
cited-state wave functions are determined by diagonalization of a
shifted Hamiltonian matrix in a biorthonormal basis. Transition
moments are subsequently determined directly as matrix ele-
ments between these states rather than as residues of response
functions, and the response functions are obtained by inserting
these matrix elements and excitation energies in the standard
sum-over-state expressions for the response functions of an exact
(variational) wave function as obtained in the quasi-energy
formulation, see eqs 278—280. By comparing the EOM-CC
and coupled-cluster response methods for truncated expansions
we shall see that the two approaches give identical excitation
energies for the standard coupled-cluster models, where the excita-
tion operator is truncated at a given excitation level, whereas other
molecular properties in the two approaches differ. For example,
transition moments are only size intensive when calculated from the
expressions obtained by response theory.

In Figure 2 the different strategies followed in EOM-CC
and coupled-cluster response theories are summarized. In the
EOM-CC method expressions for the response functions are
first obtained using the time-dependent variation principle for
the exact wave function. Subsequently, these expressions are
used with truncated summations and approximate coupled-
cluster wave functions and excitation energies. By contrast,
in response theory the wave function is approximated first
and the time development of the approximate wave function is
subsequently determined from the time-dependent variation
principle.

To illustrate the differences between the two approaches,
consider a CCSD calculation of a linear-response molecular
property such as the frequency-dependent polarizability. In
EOM-CC theory electronic states and excitation energies are
obtained by solving the EOM-CCSD eigenvalue equation (with a

EOM-CC CC response theory
Exact smel Exact state
Variations for Inmfducc_e
exact state approximations
v J to exact state
Exact ground-state energy, excitation energies, ~
and S.0.S. ions for response functi | [0) — |CC(2))
in terms of exact excited states
Introduce Variations for Lagrangian
approximations to Jfor approximate state
exact state expressi e
v Ground-state energy, excitation
ies, and resp functi
Exact Approximate for approximate state

[0@) - |cC®)
|n(°)) N |nEOM—CC)

Use S.0.S. expressions for resp fi
where exact states are replaced by approxi states

Figure 2. Comparison of EOM-CC and coupled-cluster response
theory.

shifted Hamiltonian matrix). The resulting states and excitation
energies are then inserted into the expression for the exact linear
response function in eq 278. In CCSD response theory the linear
response function is determined from eq 516. The main
difference between eqs 278 and 516 is that the latter contains
a term that is quadratic in the coupled-cluster amplitudes. This
term is absent in eq 278, which was obtained using the fact that
the exact wave function, unlike an approximate coupled-cluster
wave function, is variational. The fact that EOM-CC theory
combines equations for variational wave functions with non-
variational coupled-cluster theory thus leads to neglect of the
quadratic term. The errors introduced by neglecting the quad-
ratic term in eq 516 are most severe for the simplest coupled-
cluster methods, such as the CC2 model. In the limit of no
truncation, EOM-CC theory and coupled-cluster response
theory become identical.

In the coupled-cluster response formulation the response
functions and their residues fulfill all relations that follow from
the time-dependent variation principle, for example, the equiva-
lence between various response functions and residues discussed
for exact states in section 3.4.6 (see also ref 128). In particular,
the response functions are size extensive and their residues are
size intensive. In truncated EOM-CC theory such relations do
not hold, in particular, the EOM-CC response functions are not
size extensive'*” and their residues are not size intensive.'>* For
example, EOM-CCSD theory gives the exact frequency-depen-
dent polarizability for a two-electron system (the FCI result),
while the polarizability for two noninteracting two-electron
systems is not equal to the sum of the polarizabilities of the
individual systems. Bartlett and co-workers"**"*" proposed to
obtain size-extensive EOM-CC models by complete elimination
of unlinked terms in the EOM-CC equations. However, for the
CCSD model the exact excitation energies (FCI result) are then
not obtained for a two-electron system. These problems not-
withstanding, calculations of different molecular properties for
small molecules indicate that, in practice, the EOM-CC results are
close to those obtained with response theory.

We are now ready to examine the EOM-CC model in more
detail, limiting ourselves to excitation energies and transition
moments. To obtain the EOM-CC excitation energies and states
we write the eigenstate |k) of Hy in the form

ky = $jcc®) + ¥ REz,[ccl?) (533)
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The condition that |k) is an eigenstate of the shifted Hamiltonian
Ho — Ecc with excitation energy wk = Ex — Ecc may then be
expressed as

(Ho — Ecc) (sk|CC(O>) + Y R;‘L'M|CC(°))>
u

= wy <s’<|cc<°>> + Y R/’;rﬂ|cc<°>>> (534)
u

Projection of eq 534 from the left with the basis {(HF|, gHF|
T exp(fT(O))}, which is biorthonormal to {|CC(0)),‘L'”|CC 0))},
yields

Hb<sk>:w<sk> (535)
R “\ R¥

where HP is the shifted Hamiltonian matrix

b 0 —n

b (0 K > (536
The vector 77 is defined in eq 508, A is the coupled-cluster
Jacobian of eq 507, and the coupled-cluster energy and amplitude
equations in eqs 478 and 479 have been used to identify the zero
elements of the first column of the Hamiltonian. One solution to
eq 535 is (1,0)" with zero eigenvalue, corresponding to the
reference state |CC(0)). The remaining solutions to eq 535
represent excited states, whose eigenvectors from eqs 53$ and
536 satisfy the relations

& = o 'gR (537)

ARF = o R (538)

The vectors R are thus the right eigenvectors of the Jacobian in
eq 522, and the coefficient s* may be obtained from this
eigenvector using eq 537.

The left eigenvectors of HP, which are row vectors of the form
(LlﬁF,Lﬁ), have the same eigenvalues wy. as the right eigenvectors
and are chosen to satisfy the biorthonormal normalization L'R* =
1. Specifically, the left eigenvector with zero eigenvalue fulfills the
equation

(LgF L°>Hb =0 (539)

which, by comg)arison with eq 506, shows that (L%F,LO) corre-
sponds to (1,E9), which contains the zero-order multipliers. The
remaining left eigenvectors have nonzero eigenvalues and are
from eq 536 seen to have the form (O,Lk) , where L satisfies the

condition
LA = w, L (540)

and are therefore identical to the left eigenvectors of the Jacobian
in eq 522. We conclude that the excitation energies and
eigenvectors of EOM-CC and coupled-cluster response theories
are identical.

The first column of the shifted Hamiltonian matrix in eq 536
vanishes since the coupled-cluster state satisfies the amplitude
equations in eq 478. For the intermediate CCn models, the
amplitudes satisfy modified equations such as the CC2 amplitude

equations in eqs 481 and 48S; for these models the first column
of the Hamiltonian therefore does not vanish. The first decision
to be made in developing intermediate EOM-CC models is
therefore whether to use a nonvanishing or vanishing first
column. By contrast, in the response formulation the variation
principle for the quasi-energy Lagrangian may be invoked to
obtain the CCn excitation energies as described for the CC2
model in section 4.3.6. With this observation it is not difficult to
construct various intermediate EOM-CC models, although we
will not discuss this point further here.'

We next consider EOM-CC response functions and transition
moments, comparing these with their response-theory counter-
parts. In section 3.4 sum-over-states expressions for linear,
quadratic, and cubic response functions of an exact state were
given in eqs 278—280 with summations over the eigenstates of
the zero-order Hamiltonian. In EOM-CC theory we obtain the
expressions for the response functions by replacing these sum-
mations over exact states with summations over the biorthonor-
mal eigenstates of the EOM-CC Hamiltonian in eqs 538 and 540
using |CC(O)) and (A(0)| as the right and left reference states,
respectively.

When molecular properties are evaluated in EOM-CC theory
the exact response functions should be used where it is explicitly
imposed that the response functions are real. Consider, for
example, the transition-strength matrix elements, which in exact
theory are given in eq 290 and in EOM-CC theory become

St = (A9 alk)k(B|CC®) (541)
In EOM-CC theory the transition moments are given by

(k[B|cC?y = ¥ Liulexp( — T')B|CC) (542)

(AajK) = ; ((A(o) |AT,|cC) _t—ﬂ(o)<A(o) |A|CC(°)>)R/’j

(543)

A comparison of transition moments in EOM-CC and linear-
response theories shows that the right transition moments are
identical in the two approaches, whereas the left transition
moments differ unless the cluster operator contains the full
excitation manifold."*® The EOM-CC left transition moments
may be written in the form

(AR = Y (A1, 7] lcc)rE

+ (A7, 4| CCOHRE — EORKA® |A\cc<°>>) (544)

L

where the first term is identical to the first term in linear response
theory. The last two terms become

y (< A9z, A[CCOHRE — FORYAL) A|CC(0)>)
u

= ¥ BORulr, exp( — 1) alCC?)

w>v

-y t‘/}°>R’; Y £Owlexp(— T@)|cC@y  (545)
u

v

where only the first term is size intensive. Transition moments in
EOM-CC theory are therefore not size intensive.
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4.4, Orbital-Relaxed Response Functions

As discussed in section 4.3, the intermediate CCn models of
the coupled-cluster response hierarchy are well suited to the
study of frequency-dependent molecular properties; by contrast,
the corresponding intermediate models of the coupled-cluster
energy hierarchy, for example, the MP2 and CCSD(T) models,
provide a poor description of such properties. However, with
inclusion of orbital relaxation these models have become the
method of choice for determining many static molecular proper-
ties at a lower computational cost than their counterparts in the
coupled-cluster response hierarchy. In this section we describe
the calculation of response properties with orbital relaxation for
these perturbation-based intermediate models using the MP2
model as an example.

4.4.1. Orbital-Relaxed Response Functions. For a large
class of wave function models the wave function is determined in
two consecutive steps. First, a reference state is determined to
obtain a qualitatively correct zero-order description of the
electronic system; subsequently, dynamical correlation is recov-
ered based on this zero-order description using a correlation
method such as perturbation theory or coupled-cluster theory.
For systems dominated by a single electronic configuration we
may, for example, combine a Hartree—Fock zero-order descrip-
tion with MP2, CCSD, or CCSD(T) treatments of the correla-
tion problem; for systems with several important configurations
we may instead combine an MCSCF zero-order reference state
with a CASPT?2 treatment of the correlation. In both cases the
MOs used for the correlation treatment are inherited from the
zero-order wave function.

When molecular properties are calculated for such two-step
models we must decide whether or not to incorporate the
perturbation dependence of the MOs in the calculation of the
response functions. In the discussion of the coupled-cluster
response functions in section 4.3 the perturbation dependence
of the MOs was not considered since orbital relaxation intro-
duces singularities that destroy the pole structure of the response
functions, making the calculated frequency-dependent proper-
ties unreliable. However, for static molecular properties relaxa-
tion of the MOs in the presence of the perturbation may be
incorporated without introducing such artifacts; indeed, static
molecular properties are typically (but not invariably) calculated
from orbital-relaxed response functions. Determination of static
molecular properties then becomes equivalent to performing
finite-difference energy calculations in the presence of the
perturbation.

For static molecular properties, where orbital relaxation is
accounted for, the time-averaged quasi-energy Lagrangian in
section 3.1.3 reduces to the (time-independent) energy Lagrangian
for the two-step model. The orbital-relaxed energy Lagrangian may
be expanded in the perturbation strengths as

1
L =Ey) + Z ((V,))es, +E Z {(Vsy; Vi, )€, €5,
By By, By

1
+= Y (Ve Vs, Vs,))en, 5,85 + - (546)
Bo, By, By

where E is the energy of the two-step model in the absence of the
perturbation. No frequency subscript is attached to the response
functions since these are always determined at zero frequency,
and the notation {(Vgo;V5,)) rather than ((Vpo;Vg)) indicates
that orbital relaxation of the reference state is included in
evaluation of the response function. The orbital-relaxed response

functions are thus obtained by simple differentiation of the
energy Lagrangian with respect to the relevant perturbation
strengths. In section 4.4.2 we describe how orbital-relaxed
response functions may be obtained for the MP2 model.

Orbital-relaxed response functions are used for many static
molecular properties, for example, for molecular gradients and
Hessians (which should be identical to the corresponding finite-
difference quantities). A particular difficulty associated with these
calculations is the need to take into account the effect of
perturbation-dependent basis sets, as described in section 5.1
for geometrical derivatives. Also, when magnetic molecular
properties associated with an external magnetic field are evalu-
ated using London orbitals, for example, nuclear shielding
constants, orbital-relaxed response functions have to be consid-
ered as described in section 5.2. It should be noted that many
static molecular properties are best calculated without orbital
relaxation. For example, in the calculation of indirect nuclear
spin—spin coupling constants the inclusion of orbital relaxation
introduces the effects of Hartree—Fock triplet instabilities into
the CCSD(T) calculations and should therefore be avoided,"** as
discussed in section 5.2.2.

4.4.2. Orbital-Relaxed MP2 Response Functions. In
Moller—Plesset perturbation theory the Hamiltonian Hj is
partitioned as in eq 484. The Hartree—Fock wave function is
the zero-order eigenfunction of the Fock operator (written here
in the canonical representation)

F|HF) = Y &|HF) (547)

1

where ¢; are the energies of the occupied canonical orbitals.
Applying standard perturbation theory we obtain, to first and
second orders in the fluctuation potential, respectively, the
Hartree—Fock energy

(HF|F|HE) + (HF|U[HE) + hp

Eur

and the second-order Moller—Plesset (MP2) correlation energy
(given here for a closed-shell system)*’

Empy, = Epp — Z M (549)
albj €a — & T &

where indices ij and a,b denote occupied and virtual orbitals,
respectively. The MP2 model usually recovers a large part of the
dynamical correlation energy, providing a useful correction to the
Hartree—Fock energy at a cost significantly lower than that of
CCSD theory (noniterative n° rather than iterative n®). In this
sense MP2 theory represents a highly successful approach to
calculation of molecular correlation energies, providing, for many
purposes, accurate, size-extensive energy corrections. Higher
order energy corrections, such as those provided by third-order
Moller—Plesset (MP3) theory and fourth-order Moller—Plesset
(MP4) theory, may be derived but are considerably more
expensive than the MP2 correction and do not always provide
a smooth convergence toward the FCI energy, often oscillating
or diverging.'>*'*

For evaluation of the MP2 energy and its derivatives it is
convenient to reformulate the theory somewhat. Thus, we write
the second-order energy in the form

Empy = (HF|[U, T,][HF) (550)
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where T, is the double excitation operator in eq 475, whose
amplitudes satisfy the equations

Y, (l[F, ©|[HF)t, = — (u|U[HF) (551)
where the Fock operator may be written in the form
1
= Y, (HF|[a!,, [ay0, Hol] , [HF)E,, (552)

pgy o

We do not insist on the canonical representation since degen-
eracies among the occupled or virtual orbitals may lead to
instabilities in the derivatives.'*® We therefore only require that
the Hartree—Fock state satisfies the Brillouin condition

(HF|[E,;, Ho][HF) = 0 (553)

which is a necessary and sufficient condition for stationarity of
the Hartree—Fock energy.

We now introduce a static perturbation V such that the total
Hamiltonian can be written as

H=Hy, +V=F+U-+V (554)

The perturbed Hartree—Fock wave function |I,-ﬁ3>, the per-
turbed excited state |f), and the perturbed creation operators
» may then be expressed as'

") = ep( — ) (555)

|1} = exp(—K)lu) (556)

d,, = exp(—K)a,, exp(K) (557)
where « is an anti-Hermitian orbital-rotation operator

K= Z Kut ai m (558)

where the excitation operators are given in eq 100, with summa-
tion over all pairs of occupied and virtual orbitals.

‘We may next construct the Moller—Plesset Lagrangian Lyp, by
introducing the perturbed states and operators in eqs 555—557 into
the energy expression in eq 550 and the constraints in eqs 551 and
553 with associated Lagrange multipliers { and ¥, respectively,
yielding

Lumpy = (HF|[Uy, T»]|HF) + (f|U|HF)
+ (F|[F{Hy}, To][HF) + Y, K, (HF|[Ey, H][HF)

(559)

where we introduced the notation (for a general operator A)

A = exp(K)A exp( — ) (560)

F{A} = = Y, (HF|[al,, (a0, AJl, [HE)E,, (561)
pq, O

(562)

@ = X fuul
u

We note that the orbitals are allowed to relax in the presence of the
perturbation, orbital relaxatlon being described by the x-trans-
formed Hamiltonian H,.'**From this variational Lagrangian the
Moller—Plesset molecular properties are obtained in the usual
manner, in accordance with the 2n + 1 and 2n + 2 rules

587

L\, = (HF|[UY, T3] |HE) (563)

Ll = (aF| [0, 1] [HE) + U [HE)

- (t‘“’H{P{H“} T }\HF)
(564)

+ (HF| {ﬁ“’) Hm] HE)

L, = (HE|[UR), 1| JHE) + @)U HE)
+ @ [F(H}, 1] JHE)

+ (HE|[g©), H<2>] HE)
ul), T,

|
o]

+ @|[FH"Y, 11" E)

(565)

The zero-order equations for the amplitudes and Lagrange multi-
pliers are given by

Y, u|[F, ©][HE)” = — (u|U")|HF) (566)
Y B|[f, 7u)|HE) = — (HE|[U"), 7,|HF) (567)
]Z(HF|[K,~, [K H°>”|HF)K
= —(HF| HK,, <°>}, TM |HE) — (79| [K,., U(O)] IHF)
(] [F{ |:Ki, H(O)} } Tﬁo’} |HF) (568)

whereas the first-order equations for the orbitals and amplitudes
become

3, G [k [, HO | IR = — (EtF [, 1O [HE)
(569)

Y, w|[F, 7,)HE))
= — WU HE) - @l [FHD), TR (570)

By substituting the solutions to the linear equations in egs
566—570 into the energy expressions in eqs 563—565 we obtain
MP2 static molecular properties up to second order.

4.5. Response Functions with Perturbation-Dependent
Basis Sets

When molecular properties that depend on nuclear distor-
tions or external magnetic fields are calculated, perturbation-
dependent basis sets are typically used, as discussed in sections
2.4 and 4.4.1. In the present section we discuss the evaluation
of response functions for such properties, the most important
of which are molecular gradients and Hessians (geometrical
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distortions) and nuclear shielding constants (magnetic field
variations).

For a general perturbation parameter ¢ (which may represent
a nuclear distortion or an applied magnetic field) we expand the
energy in orders of the perturbation

1
E(e) = E© 4+ EWe + EE(Z)EZ + .. (571)

and are partlcularly 1nterested in the first- and second-order
properties EY and E®. The Hamiltonian is expanded in a
similar manner

1
H(e) = Hy + HYe + EH%Z + .. (572)

An important difference from the theory discussed before is the
appearance of second-order and higher order perturbation
operators, all of zero frequency. The appearance of nonlinear
terms in the perturbation operator is a generalization of the
operator considered in section 3.2, where V(0) = 2V, of eq 199
contains only a linear term. Expressing the energy in terms of a
Lagrangian we then obtain the following expressions for the first-
and second-order molecular properties

B0 j_’; = ((HM)) (573)
B = j—L = ((H®)) + (=Y HW)) (574)

where we used the notation for orbital-relaxed response func-
tions introduced in eq 546, L is the variational Lagrangian, and
the linear response function has been evaluated at zero fre-
quency. These expressions are evaluated from the first- and
second-order perturbed Hamiltonians

- 1 N
H(l) = Z h}(ﬂli)E g T 5 Z gl(’;)rs(quErs - 5!1’EP5) (575)
rq pars

H(Z) = Z h}%) Z gpqrs - 6q'EP5) (576)
Pq pars
for which explicit expressions are given in section 2.4.4 for the
first- and second-order OMO integrals expressed in terms of one-
index transformations. Here, we assumed singlet perturbations,
which is sufficient for evaluation of molecular gradients and
Hessians and also nuclear shielding constants of closed-shell
systems. More generally, the first- and second-order operators
may also include triplet excitation operators, see eqs 102—108.
Taking the expectation value of the operator in eq 575 we
obtain for the first-order property

) = Z quh}(i;) + 3 Z dP‘Tngpqrs nuc (577)
rq P‘i’s

where we introduced the one- and two-electron density matrices
with elements

Dyg = ((Epg)) (578)

dpqrs = <(quErs - éqrEpS)> (579)

In the simplest cases the density matrices are expectation values
of the wave functions, for example, in Hartree—Fock, FCI,
and MCSCEF theories. For nonvariational methods such as
coupled-cluster theory, the density matrices are more compli-
cated, involving contributions from the Lagrange multipliers of
the Lagrangian. Inserting the expression for the first-derivative
one-electron integrals in eq 134 and the corresponding ex-
pression for the two-electron integrals we obtain for all wave
function models

EW = Z DP‘ihp; + 5 2 dpqrsgpqrs
p qVS

EFS + )

nuc

(580)

where 1" i the derivative of the overlap matrix, and we introduced
the generah'zed Fock matrix

Z Dpohgo + Y, dyorsGors (581)

ors

For the important special case of molecular gradients the term
involving the derivative overlap matrix and the generalized Fock
matrix is known as the Pulay force. By re-expressing eq 580 in terms
of AO integrals the gradient can be efficiently evaluated from
derivative integrals in the AO basis, multiplying these integrals with
the density matrices, avoiding storage of the large number of
derivative integrals (for example, the Hartree—Fock molecular
gradient in the AO basis is given by eq 386 in the time-independent
limit).

The second-order property in eq 574 consists of two parts.
The expectation value is calculated in the same manner as the
molecular gradient in eq 577, replacing first derivatives by second
derivatives

- 1 _
DN = X Dyl + 5 X dg + e (582)
rq pars

The resulting expression is more complicated than that of the first-
order property but can be straightforwardly and efficiently evaluated
in the same manner. Evaluation of the linear-response part of the
second-order property in eq 574 follows the general approach for a
frequency-independent perturbation, keeping in mind that HY in
eq 575 contains two-electron as well as one-electron contributions.

For a concrete example we consider the evaluation of the
linear-response contribution in Hartree—Fock theory following
the MCSCF formalism developed in section 4.2. Setting the
frequen equal to zero in the Jesponse equations in eq 466 we
obtam E 218 = i), where B! is given in eq 453, B in eq 444,
and V1Y in eq 449, yleldmg

(HF|[q, [Ho, q']|[HF)  (HF|[q, [H,, q]]|HF) K
(HF|[q", [Ho, q"]}|HF) (HEF|[q", [Ho, q]]IHF) /| x
HEF|[q, HF
(g, 1)) )
'\ (HEF|[q", HV]HE)
where we assumed real matrices A and B. Expanding the two
components and assuming a real perturbation we obtain the

following response equations for the real and imaginary compo-
nents of K

(HF|[q" — q, [q" — q, Ho]||HF)Im«

= —(HF|[q" — q, ReHV]HF) (584)
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(HF|[q" + q, [q" + q, Ho]|[HF)Rex

= —(HF|[q" + q, ImH"|HF) (585)

Taking into account spin symmetry, these equations may be
reduced further, as discussed in ref 6.

4.6. Overview of Developments and Implementations

Having presented a theoretical framework for Hartree—Fock,
MCSCEF, coupled-cluster, and Moller—Plesset response theory
we now review the extensive literature on this subject with
emphasis on recent developments and implementations. First,
we discuss in section 4.6.1 evaluation of expectation values and
first-order properties. Section 4.6.2 is devoted to Hartree—Fock
and MCSCF theories, while developments in coupled-cluster
theory are described in section 4.6.3, and section 4.6.4 contains a
brief discussion of explicitly correlated methods. In section 4.6.5
the second-order polarization-propagator approximation (SOPPA)
is discussed, followed by the algebraic-diagrammatic-construction
(ADC) method in section 4.6.6. Finally, section 4.6.7 contains a
brief discussion of relativistic corrections.

4.6.1. Expectation Values and First-Order Properties.
First-order molecular properties represent the first-order change
in the electronic energy upon a perturbation of the system and
therefore correspond to the first derivative of the energy with
respect to the perturbation strength. For variational electronic-
structure models the first derivative of the electronic energy is
equal to the expectation value of the operator associated with the
perturbation of the system, in accordance with the Hellmann—
Feynman theorem,**® see eq 177.

By contrast, nonvariational electronic-structure models do not
satisfy the conditions of the Hellmann—Feynman theorem, as
discussed in section 3.1.3. For such models, therefore, a molec-
ular property calculated as an energy derivative and as a standard
expectation value differ. The first-order property is then usually
calculated as an energy derivative from a Lagrangian,77 where it
becomes a generalized expectation value (see eq 198), which, in
coupled-cluster theory, for example, includes a contribution from
the relaxation of the orbitals to the perturbation.

As an alternative to the Lagrangian method, Korona and
Jeziorski presented in 2006 an approach for calculating one-
electron density matrices from the explicitly connected commu-
tator expansion of the expectation value at the expectation-value
CCSD (XCCSD) level of theory."®” In their approach the
density matrix is obtained at little additional cost beyond
calculation of the CCSD energy, making it less demanding than
Lagrangian-based CCSD theory by avoiding the multiplier
equations, without compromising the quality of the calculated
one-electron molecular properties, although we note that the
resulting properties are not equivalent to finite-difference results.

Analytic first-order property schemes have a long history,
which cannot be covered exhaustively here. Often they are
obtained as a byproduct of analytic molecular-gradient imple-
mentations by replacing the differentiated Hamiltonian integrals
with the integrals for the perturbation operator. Finite-field
methods have also been extensively used to compute first-order
properties, in particular, for molecular multipole moments, see,
for example, ref 138. Thus far we restricted ourselves to
considering first-order properties for the electronic ground state,
but we note that these properties can also be computed for
electronically excited states, as will be discussed in section 5.8.

During the past few years attention has been directed toward
reducing the computational scaling of ab initio methods, adapt-
ing them to larger molecular systems. As an example of such
developments affecting the analytic calculation of first-order
properties, Friedrich et al."*” extended in 2009 their automated
implementation of the incremental scheme for CCSD energies to
the analytic computation of molecular (unrelaxed) first-order one-
electron properties, testing the convergence and accuracy of the
incremental scheme for the dipole and quadrupole moments of a
variety of chemically interesting systems. An analysis of the influence
of local approximations in CCSD theory on electric dipole moments
(and static dipole polarizabilities) was presented a few years earlier by
Korona et al."* utilizing a finite-field approach.

4.6.2. Hartree—Fock and MCSCF Response Theory.
Development of molecular response functions for a Hartree—
Fock SCF state has a long history. Time-dependent Hartree—
Fock equations were first derived by Dirac in 1930."*' Deriva-
tions and applications in the context of determining atomic and
molecular properties were presented by McLachlan and Ball,'**
Dalgarno and Victor,'** and Dunning and McKoy'** without
explicitly setting up response functions. In this review we
concentrate on modern developments, where the time evolution
of the approximate state is used to set up response functions, from
which molecular properties are determined. For Hartree—Fock
theory this development was initiated by Dalgaard,'** who deter-
mined the linear and quadratic response functions for Hartree—Fock
states. The more general framework for carrying out response theory
at the Hartree—Fock and MCSCEF levels of theory was formulated by
Olsen and Jorgensen in 1985,”° who developed tractable expressions
for Hartree—Fock and MCSCF linear and quadratic response
functions, their poles and residues. Subsequently, efficient imple-
mentations of linear,”® quadratic,” and cubic'®'®! response func-
tions were presented.

In the formulation by Olsen and Jorgensen, response functions
were obtained by applying the Ehrenfest theorem to determine
the time evolution of an expectation value for the Hartree—Fock
and MCSCEF states. An alternative approach is the quasi-energy
formalism, defining response functions as derivatives of the
quasi-energy, as done in our discussion of response functions
in Hartree—Fock (section 4.1) and MCSCF (section 4.2)
theories. An advantage of this approach is that it allows computa-
tional expressions for frequency-dependent properties to be
obtained by differentiation, thereby facilitating derivation of
the working equations for computer implementations. This
approach became popular with the work of Aiga, Sasagane, and
Itoh®*% and Christiansen, Hattig, and _]Q)rgensen.66 Frequency-
dependent polarizabilities obtained as quasi-energy derivatives
had been considered earlier by Rice and Handy."*

The first open-ended approach for higher order molecular pro-
perties was that of Dykstra and Jasien'*’ based on energy-derivative
theory for static (time-independent) perturbations. Shortly there-
after Sekino and Bartlett presented an open-ended analytic ap-
proach for frequency-dependent Hartree—Fock (hyper)-
polarizabilities'*® based on Frenkel’s variation principle for the
Schrodinger equation.”” A similar scheme for time-dependent
Hartree—Fock theory was later presented by Karna and Dupuis.*’

Hartree—Fock response methods have continued to evolve in
recent years, in particular, toward reducing the scaling of the
computational cost, ideally to become of linear complexity.
These developments have often been connected to those for
Kohn—Sham theory, which is not discussed in this review. An
essential step has been to abandon the MO basis, working instead
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directly in the AO basis and in terms of the AO density
matrix.'>'*19271% The approach by Thorvaldsen et al.'® is
described in section 4.1 and is particularly convenient for
calculations with perturbation-dependent basis sets, which are
an integral part of this formulation. A historical account of
response theory and quasi-energy approaches to the calculation
of frequency-dependent magnetic properties is found in ref 150.

4.6.3. Coupled-Cluster Response Theory. Coupled-clus-
ter response theory was first developed by Monkhorst,*"
Dalgaard and Monkhorst,">* and Mukherjee and Mukherjee'>>
in the late 1970s. However, development of coupled-cluster
theory into the most accurate black-box approach for calculation
of molecular properties took place in the 1990s, initiated by the
derivation of the linear and quadratic response functions and
their residues for the standard coupled-cluster models where the
cluster operator is truncated at a given excitation level.">*
Response functions were obtained by examining the time evolu-
tion of a generalized coupled-cluster averaged value (A|A|CC),
where the coupled-cluster state and the associated lambda state
are required to satisfy the time-dependent Schrodinger equation.
In ref 154 it was not imposed that (A|A|CC) is real. This
requirement was later imposed by Pedersen and Koch,'** there-
by ensuring that the resulting response functions satisfy the
symmetry relations of section 3.4.4 also for complex Hamilto-
nians. The quasi-energy Lagrangian approach was subsequently
developed®***'?! following the introduction a few years earlier
of the Lagrangian technique.””"*® The quasi-energy Lagrangian
approach simplified the derivation of the response functions, in
particular, for intermediate coupled-cluster models such as the
CC2 and CC3 models.

The first CCSD linear response implementation of excitation
energies was reported in ref 157. Implementations of the CCSD
linear,">>'%1%%" quadratic,"® and cubic”® response functions
were subsequently presented. Introduction of the intermediate
CCn hierarchy for frequency-dependent properties was an im-
portant development in the 1990s, including the CC2"*' and
CC3"**'** models as approximate CCSD and CCSDT models,
respectively, see the discussion in section 4.3. Implementations
of the CC3 model were first reported by Christiansen et al. for the
linear response function,'®" by Gauss et al. for the quadratic
response function,'®> and by Pawlowski et al. for the cubic
response function.'®® More recently, Kallay and co-workers
derived and implemented linear'®* and quadratic'®® response
functions for general coupled-cluster models with arbitrary
excitation levels in the cluster operator.

Whereas the CC3 and higher order coupled-cluster models are
still mostly used for small systems and benchmarking, the CC2
model, e%pecially in combination with Choleskg‘ decompo-
sition'®'®” and resolution of the identity'®*~'7® techniques
for the two-electron integrals, constitutes the only practical
alternative to Kohn—Sham theory for computing response
properties of larger systems (mainly excitation energies and
other linear-response properties),'”' ~'”” although ongoing work
on linear-scaling formulations of coupled-cluster theory appear
promising with respect to future extensions to more accurate
coupled-cluster models.

Very recently, Korona 78 proposed a noniterative correction
to the (X)CCSD polarization propagator/linear response func-
tion, correct to third order in Moller—Plesset theory and of only
n® complexity (compared with n” for the CC3 model). The same
author also presented a variant of the CC2 linear response
approach,'” denoted XCC2, where the time-independent

1
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coupled-cluster polarization propagator of Moszynski et al.'*’
is combined with CC2 excitation operators. For molecular
properties the XCC2 model appears to be a practical alternative
to the CC2 model.

Within the framework of coupled-cluster theory, molecular
properties may also be calculated using the EOM-CC model
discussed in section 4.3.7, developed primarily by Bartlett and
co-workers, see refs 181 and 182, and the contribution from
other authors to the present volume, for recent reviews. For the
standard coupled-cluster hierarchy, EOM-CC theory yields
the same excitation energies as those obtained with linear res-
ponse theory, but there are differences for other properties such
as the lack of size intensitivity of EOM-CC transition moments
discussed in section 4.3.7.">>"'*

Extensions of the EOM-CC model to higher order response
properties have been proposed by Rozyczko and Bartlett.'®>'%*
Importantly, the EOM-CC model provides an excellent frame-
work for calculation of ionization potentials and electron-attach-
ment energies, see, for example, refs 181, 185, and 186.
Approximate triples models for excitation energies were intro-
duced by Watts and Bartlett based on the CCSDT-la
model."*”'¥ The CCSDT-1a calculations showed that excita-
tion energies dominated by a double excitation were significantly
improved relative to the CCSD results, while excitation energies
dominated by a sin%le excitation did not show any improvement.
Christiansen et al."® demonstrated that when the dominant
triples contribution in the triples equation is considered, and
importantly, no approximations are made in the singles and
doubles amplitude equations; then excitation energies domi-
nated by a single excitation are correct to third order in
Moller—Plesset perturbation theory and are thus improved
compared to the CCSD excitations (which are correct to second
order). The CCSDT-la model and most other proposed
approximate triples models'®”'®! introduce approximations in
the singles and doubles equations and therefore do not improve
upon excitations dominated by a single excitation. By contrast,
improvements are observed for the CC3'*>'** and CCSDT-3'%*
models, where no approximations are made in the singles and
doubles equations.

Most of the development of coupled-cluster response theory
has been concerned with the properties of singlet states, although
extensions to properties of states of other spins have been made.
The EOM-CC method in the spin—orbital basis as presented by
Stanton and Bartlett allows evaluation of properties of states with
general spin'?’ within the limits of this approach. Hald et al."*®
presented an extension of the CC2 method to triplet excitation
energies of closed-shell molecules using an integral-direct ap-
proach and explicitly spin-coupled triplet excitations in the
orbital basis and with an implementation which has roughly
the same operation count as for singlet excitations. The approach
was subsequently extended to the CCSD'*® and CC3'7'%®
models. Several important implementations of the coupled-
cluster hierarchies to open-shell references have appeared over
the years, and we refer to the review by Stanton and Gauss'*” for
an account of earlier contributions on this subject up to 2003. In
addition (limiting ourself to some of the most recent work) we
mention here the spin-flip EOM-CC approach of Krylov and co-
workers,"®"*° 2% and the open-shell variant of the CC3
method by Crawford and co-workers.***

Concerning local coupled-cluster response methods we men-
tion here the work of Russ and Crawford,**® which extends the
local coupled-cluster approach of Pulay and Saebo>****’ to
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dipole polarizabilities®® and the optical rotation tensor,”*® and
the already mentioned analysis of Korona et al."** We also note
the local multistate CC2 response method of Schutz and co-
workers for calculating excitation energies and first-order proper-
ties of excited singlet’® "> and triplet*"? states in extended
molecular systems.

4.6.4. Explicit Correlation. In recent years, explicitly corre-
lated electronic-structure theory has established itself as an
efficient and accurate alternative to the traditional treatment of
correlation energies in quantum chemistry. In particular, expli-
citly correlated techniques are now being applied not just to
calculation of electronic energies but also to calculation of
molecular properties. The first analytic implementation of the
calculation of first-order properties was presented in 2005 by
Kordel et al. at the MP2-R12 level of theory”'* using an auxiliary
basis for the resolution of the identity approximation with and
without a frozen core. Two years later their approach was
generalized to calculation of the full geometrical gradient.”'®
Recently, Hofener et al. presented an analytical scheme for first-
order properties in MP2-F12 theory.”’® Smooth and rapid
convergence toward the basis-set limit was observed for the
dipole moments of small closed- and open-shell molecules in
augmented correlation-consistent polarized-valence basis sets
optimized for MP2-F12 theory. Finally, regarding response
theory for explicitly correlated methods we refer to refs
217-219, noting here its recent extension to higher order
response functions by Hanauer and Kohn.**

4.6.5. Second-Order Polarization-Propagator Approx-
imation. A well-established framework for calculation of mo-
lecular response properties is the second-order polarization-
propagator approximation (SOPPA).”*'~>** The SOPPA linear
response function (the polarization propagator) was proposed as
an extension to Hartree—Fock theory with the response function
and its pole structure correct to second order in perturbation
theory. It may be derived using a superoperator formalism;**"
alternatively, it may be obtained by an exponential parametriza-
tion of the time evolution, consisting of products of exponentials
for orbital rotations and higher order excitations, truncated such
that the response function and its poles are correct to second
order in Moller—Plesset perturbation theory.””* The second
strategy is particularly convenient for extension of SOPPA to
quadratic and higher order response functions, making calcula-
tion of molecular properties such as hyperpolarizabilities, TPA
cross sections, and excited-state properties possible within the
SOPPA model, see ref 223 for details.

A few variants of the SOPPA approach have been proposed
over the years, like the CCSDPPA (coupled-cluster polarization-
propagator approximation with single and double excitations) of
Geertsen and Oddershede”****® and the more recent SOPPA-
(CCSD)*****” and SOPPA(CC2)*** models, which have the
same excitation orders as the SOPPA model but employ CCSD
or CC2 amplitudes instead of the Moller—Plesset correlation
coefficients. The idea is to retain as much as possible the n°
computational scaling of the SOPPA model in the propagator
calculation (even though generation of the CCSD amplitudes in
SOPPA(CCSD) theory still scales as n°). The performance of
both the traditional SOPPA approach and of its coupled-cluster-
modified variants for calculation of various properties, including
excitation energies, dipole oscillator strengths, shielding con-
stants, indirect nuclear spin—spin coupling constants, Cg disper-
sion coeflicients, and rotational g tensors, has been the subject of
several benchmark studies during the last 5 years.”*”~**
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4.6.6. Algebraic-Diagrammatic-Construction Method.
Another popular polarization-propagator method is the al§e—
braic-diagrammatic-construction (ADC) e;pproach of Schirmer.”
The second-order ADC(2) model***~**" allows for a theoretical
description of single and double excitations consistently to
second and first order, respectively, in perturbation theory. The
computational scheme is essentially an eigenvalue problem of a
Hermitian secular matrix defined with respect to the space of
singly and doubly excited configurations. The configuration
space is smaller (more compact) than that of comparable CI
expansions, and the method leads to size-extensive results. As
discussed by Hittig,”*® the ADC(2) method is closely related to
the CIS(Do)>*” and CC2 approximations. In the same paper
the author reports an implementation of the analytic excited-
state gradients for the ADC(2) and CIS(D,,) models. A modi-
fied ADC(2) method,*****” with an implemented core—valence
separation approximation, has been extensively applied to evalua-
tion of excitation energies and transition moments in the X-ray
region, see, for example, refs 237 and 240—242.

The third-order ADC(3) model, for direct computation of
electronic excitation energies and transition moments, has been
presented by Trofimov et al.**® based on a specific reformulation
of the diagrammatic perturbation expansion for the polarization
propagator. The computational scheme combines diagonaliza-
tion of a Hermitian secular matrix and perturbation theory for the
matrix elements. The relationship of the ADC(3) scheme to
coupled-cluster theory, in particular, with respect to treatment of
transition moments, was also discussed. Recently, calculation of
linear and quadratic response functions using the ADC(2) and
ADC(3) models has been presented, based on a Lanczos
procedure.**

4.6.7. Relativistic Corrections. Over the years many ap-
proaches have been proposed and implemented to compute
relativistic first-order and higher order properties. Referring to
the excellent monograph of Dyall and Fagri Jr.*’ for details, we
note that relativistic methods may be divided into perturbative
and nonperturbative approaches. In the first group a nonrelati-
vistic calculation of energies and properties is followed by a
perturbation treatment with the squared fine-structure constant
@ as perturbation strength. In the second group a relativistic
Hamiltonian is used as the starting point. The distinction
between the two groups is blurred by the fact that perturbation
theory is used to determine the relativistic Hamiltonian and that,
even in perturbative approaches, scalar relativistic terms, often
using scalar-relativistic Hamiltonians, such as the Douglas—
Kroll—Hess Hamiltonian®**~>*" or relativistic effective core
potentials,*****’ may be included in a nonperturbative fashion,
treating only the more complicated nonscalar relativistic terms
such as spin—orbit terms perturbatively.

With respect to the perturbative approaches, direct perturba-
tion theory (DPT) to second order (DPT2) has been applied by
Stopkowicz et al. to compute corrections to electrical first-order
properties for coupled-cluster methods.”*® Very recently, also
energy gradients were implemented using DPT to fourth order
(DPT4), allowing for calculation of fourth-order relativistic
corrections of the Hartree—Fock energy.”>' Combining the
fourth-order gradients with numerical differentiation, these
authors also determined relativistic corrections to various first-
order electrical properties at the Hartree—Fock level of theory
for selected systems.”> We also mention the general second-
quantization formalism presented by Helgaker et al*>* for
calculation of relativistic corrections to molecular electronic
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energies and properties; in their formalism a Hamiltonian
valid for all values of the fine-structure constant ¢ is used to
set up a perturbation expansion in orders of &” using the general
framework of time-independent response theory in the same
manner as for geometrical and magnetic perturbations. Cheng
and Gauss™* proposed an analytical scheme for calculation
of first-order electrical properties using the spin-free Dirac—
Coulomb Hamiltonian, which thus exploits density-matrix
formulations in nonrelativistic coupled-cluster derivative theory,
with benchmark calculations for first-order electrical proper-
ties of the hydrogen halides up to HAt and of a few selected
iodo(fluoro)methanes.

For the nonperturbative approaches a method to calculate
properties to arbitrary order within the framework of Douglas—
Kroll—Hess theory has been suggested by Wolf and Reiher.”*®
By consistent use of unitary transformations of both wave
functions and property operators the picture-change error is
eliminated. This method has been applied to calculate expecta-
tion values of powers of 1/r>% Regarding fully relativistic
treatments we note that van Stralen et al. in 2005 presented
the first implementation of analytical first-order one-electron
molecular properties at the Dirac—Coulomb MP2 level of theory
using a formalism that allows use of inactive spinors.”*’

Second-order and higher order electric and magnetic proper-
ties may also be calculated using the perturbative or nonpertur-
bative relativistic approaches. Norman et al.**® compared
Douglas—Kroll—Hess, effective core potentials, and Dirac—
Coulomb Hartree—Fock calculations for the study of nonlinear
optical processes. Klopper et al.>* presented an implementation
of first-order relativistic corrections to electrical response proper-
ties (with applications to the static and frequency-dependent
dipole polarizability and second dipole hyperpolarizability of Ne)
at the level of closed-shell coupled-cluster theory within the DPT
framework. Perturbative studies of spin—orbit effects have been
presented in a number of works, in particular, in connection to
nuclear magnetic shielding constants.***®° Examples of nonper-
turbative approaches to calculation of molecular properties is the
no-pair four-component linear response theory and implementa-
tion of Visscher et al,*®' the four-component Hartree—Fock
linear response theory and implementation by Saue and
Jensen,”** and the quadratic response theory and implementa-
tion of Norman and Jensen.”*> More recently, the open-ended
response theory of Thorvaldsen et al.'® was extended to the two-
and four-component levels of theory for calculation of arbitrary
one-electron properties to any order,'”” including London atom-
ic orbitals to first order.”®*

5. SURVEY OF MOLECULAR PROPERTIES

The present section contains a survey of molecular properties
with emphasis on correlated electronic-structure methods and
recent computational advances. The section is divided into eight
subsections, covering molecular geometrical properties in sec-
tion 5.1, NMR and EPR parameters in sections 5.2 and $.3,
respectively, electric multipole moments in section 5.4, linear and
nonlinear response properties in sections 5.5 and 5.6, respec-
tively, intermolecular interactions in section 5.7, and excitation
energies and excited-state properties in section 5.8. Our survey is
necessarily incomplete but should be sufficiently exhaustive and
representative to illustrate the enormous impact that the ab initio
evaluation of molecular properties now has in many areas of
chemistry.
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5.1. Geometrical Derivatives

Since the pioneering work of Bratoz,%%° Gerratt and Mills,>%
Pulay,"'® Moccia,**” and Thomsen and Swanstrom>®® the analy-
tic calculation of geometrical derivatives such as molecular
gradients and Hessians has revolutionized quantum chemistry
by enabling efficient and automated calculation of molecular
structure, spectroscopic constants, reaction paths, and classical
trajectories. Indeed, there is still a vigorous activity in this field,
new techniques and implementations being developed at all
levels of ab initio theory, from linear-scaling techniques for large
molecular systems to highly accurate force-field calculations
on small systems with explicitly correlated wave functions. We
do not discuss here the evaluation of specific spectroscopic
constants related to geometrical derivatives and distortions but
note that the combined development of advanced analytic deri-
vative procedures and high-accuracy quantum-chemistry methods
has had a great impact on, for example, rotational spectro-
scopy. A thorough account of the theory and application of state-of-
the-art quantum-chemical methods for accurate determination of
the spectroscopic parameters relevant to rotational spectroscopy has
very recently been reported by Puzzarini, Stanton, and Gauss;> we
refer the interested reader to this work for more information on the
ab initio study of these molecular properties.

5.1.1. Molecular Gradients and Hessians. Geometrical
derivatives may be calculated using the general methods of
response theory, for example, denoting nuclear coordinates by
Ry, we obtain for the molecular gradient and Hessian, respec-

tively
E — ﬂ ( 586)
dRy  \ \dRg
PE &H dH (dH\"
dRgdR; dRxdR; drR;’ \dR;
(587)

Evaluation of these expressions was discussed in some detail in
section 4.5 and is also discussed in many specialist reviews. In
particular, we here refer to the review of Stanton and Gauss,”®
who thoroughly reviewed the field up to the year 2000. In the
following, we focus on developments during the past decade.
Moreover, in the present section we restrict ourselves to calcula-
tion of forces, force constants, and property gradients, postpon-
ing discussion of excited-state gradients to section 5.8.5.
Coupled-cluster theory is today recognized as the method of
choice for providing ab initio results of high accuracy, the
CCSD(T) method being considered the gold standard of ab
initio theory.***”® In 2003, an integral-density direct implementa-
tion of the analytic CCSD(T) molecular gradient based on a
Lagrangian formulation was presented. This implementation cir-
cumvented the bottleneck of storing either O(N*) two-electron
integrals or O(N% density matrix elements on disk and included a
frozen-core variant.>”* However, for molecules with difficult elec-
tronic structures, more elaborate methods are needed for high
accuracy, based on a multiconfigurational reference wave function or
on inclusion of higher order excitations. Thus, Gauss and Stanton>”*
implemented in 2000 analytic first and second derivatives for the
CCSDT-n (n=1,2,3) models,>>*”* CCSDT-1 first derivatives
having been implemented already in 1998 by Scuseria and
Schaefer.”’® In ref 272 analytic derivatives were also presented for
the CC3 model,"** later extended to include full triples corrections
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CCSDT.>® Usin% the string-based many-body formalism of Kéllay
and co-workers,”””*”® Kaillay et al. implemented first and
second analytic derivatives for these general coupled-cluster
methods.>*%**!

For molecules with a strong multireference character, corre-
lated methods based on the dominance of a single reference
determinant are insufficient for high-accuracy calculations. In
recent years there has been increasing interest in the develop-
ment of analytical derivatives for multireference wave functions.
Lischka, Dallos, and Shepard developed analytic gradients for
multistate  MRCI wave functions for excited electronic
states,**>*®% whereas Khait, Theis, and Hoffmann recently pre-
sented an implementation of MRCI single—doubles (MRCISD)
gradients™®* based on the Lagrangian formulation of Helgaker
and Jorgensen,””'>® allowing them to calculate state-averaged
MCSCEF wave functions with varying weights on the electronic
states, a restriction in the approach of Lischka et al.** Celani and
Werner, on the other hand, implemented analytic gradients for
multireference perturbation theory,”®® providing an efficient route
to dynamic correlation for multireference wave functions."'>*%*%”
More recently, Gauss and co-workers*****” implemented ana-
Iytic gradients for two-determinant reference wave functions in
Mukherjee’s state-specific multireference coupled-cluster theory,”™®
later including orbital relaxation at the MCSCF rather than
Hartree—Fock level of theory.”*’

A well-known difficulty with determinantal wave function
expansions is their slow convergence with respect to the size of
the orbital basis.****" This problem is solved by introducing an
explicit dependence on interelectronic distances into the wave
function in R12 theory,”>** later generalized to F12 theory.”****
For an overview of recent developments in this field, see also the
review by Helgaker, Klopper, and Tew.”® The added complications
of explicit correlation on top of the difficulties associated with
nonvariational wave functions make it difficult to develop analytic
techniques for geometrical derivatives and other properties. Still, an
analytic gradient for the MP2-R12 method has been implemented by
Kordel, Villani, and Klopper.*'*

During the past decade, several approaches have been pro-
posed to reduce the computational cost of correlated wave function
methods, making them applicable to large molecular systems. One
successful ap roach is the resolution of the identity approxi-
mation,"®®””° in which one of the overlap distributions of the two-
electron integrals is fitted in an auxiliary basis, reducing cost by
avoiding calculation of four-center integrals. Distasio, Steele, and
Head-Gordon implemented analytic gradients for this technique,”™® in
which the number of orbital responses required for gradients in
their dual-basis resolution of the identity MP2 (DB-RI-MP2)
method has been reduced to the product of the number of
occupied and virtual orbitals determined by the rank of the small
AO basis, leading to an efficient code for systems up to about 100
atoms. Kossmann and Neese recently presented an efficient
implementation of gradients for the RI-J chain of spheres-
exchange RI-MP2 (RIJCOSX-MP2) approach.”””**® We also
note the RI implementation of gradients for the spin-compo-
nent-scaled (SCS) methods by Hellweg, Griin, and Héittig.29

A related technique for reducing the cost of two-electron
integral evaluation is Cholesky decomposition, recently ag)plied
to gradient integrals, but only in Kohn—Sham theory.**° Like-
wise, an efficient linear-scaling method for molecular forces has
recently been presented in Kohn—Sham theory,*®" based on the
combined use of density fitting, the continuous fast-multipole
method,** and expansion of solid-harmonic Gaussians in Hermite
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rather than Cartesian Gaussians;*®> we also note the Kohn—
Sham molecular gradient of Dominguez-Soria et al.*** for use in
calculations on large molecules. For these molecular-gradient
techniques to be useful in a wave function context more efficient
methods must be developed for evaluation of exact-exchange
integrals.

An important approach for reducing the computational scaling
for large molecules is the use of local orbitals and local correlation
methods.”****” Schutz et al. presented a local-correlation im-
plementation of analytic gradients utilizing the resolution of the
identity approximation,®® demonstrating that the approach yields
quadratic scaling with respect to molecule size and cubic scaling
with respect to basis-set size. A local coupled-cluster gradient has
been presented by Rauhut and Werner but appears not to be used
in practical calculations.>*® Regarding orbital localization, we also
mention the work of Leininger et al.**” on preserving orbital locality
during CASSCF geometry optimizations.

The frozen natural-orbital coupled-cluster (FNO-CC)
approach®®®** allows for faster coupled-cluster calculations by
reducing the size of the virtual space, see also related work by
Klopper et al.*'® Taube and Bartlett presented an imglementation
of analytic gradients for the FNO-CC approach,”"" including
orbital relaxation for noncanonical and semicanonical perturbed
orbitals. Although the method was successful in reproducing
benchmark data for energies, geometries, and vibrational frequen-
cies, it requires substantial disk storage, making it less attractive for
larger systems. These authors also presented analytic derivatives
for the variational ACCSD(T) method*"*>'® (also known as the
a-CCSD(T) method*"?), demonstrating the improvements in the
potential-energy surfaces with this method due to its better
performance in bond-breaking situations.®'® Analytical ACCSD-
(T) derivatives were also discussed, but not implemented, by
Crawford and Stanton in 1998.>"

In recent years, Gauss and co-workers developed highly corre-
lated methods for relativistic corrections based on a perturbative
treatment of the leading order relativistic corrections.>"” 3%
Michauk and Gauss presented analytic gradients for such an
approach, including relativistic corrections from the mass—velocity
and (one- and two-electron) Darwin terms,>"” see eqs 39 and 40.
More recently, Wang and Gauss presented analytic gradients®"®
and Hessians®'® for two-component CCSD(T) wave functions
including spin—orbit corrections,**° providing a cost-effective
and highly accurate alternative to four-component coupled-
cluster calculations.>*"**> Also very recently, Zou et al.*** derived
and implemented the analytical energy gradient of the normalized
elimination of the small component (NESC) method,*** which
allows calculation of NESC geometries and other first-order
molecular properties in combination with Hartree—Fock theory,
Kohn—Sham theory, coupled-cluster theory, or any electron
correlation-corrected quantum-chemical method, provided the
NESC Hamiltonian is determined in an efficient, yet accurate,
way. Another interesting recent development in coupled-cluster
theory has been the appearance of several parallel implementa-
tions, also for molecular gradients and Hessians.**>~**” Analytic
derivatives are beginning to appear for nonstandard wave func-
tion models such as multiwavelets®>® and the contracted anti-
Hermitian Schrédinger equation.”® Finally, we note recent
work on quantum algorithms for molecular properties and
geometries.330’33’1

5.1.2. Molecular Higher Order Derivatives. Analytic
calculations of cubic and higher order contributions to molecular
force fields are very limited. Handy and co-workers developed an
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analytic approach for cubic*** and quartic®** force fields as well as
first and second geometric derivatives of the dipole moment and
the electric polarizability.>** Despite the obvious advantages of
such an analytic approach, the code has not been much used after
the initial applications but we note a study of the anharmonic
force field of benzene.**® To the best of our knowledge, higher
order geometrical derivatives have not been explored by analy-
tical techniques since these pioneering works. Instead, such
derivatives have been obtained in a mixed numerical—analytical
manner in which higher order derivatives are obtained by finite
differences of analytically calculated gradients and Hessians, see,
for example, refs 336—338.

5.1.3. Property Geometrical Derivatives. Besides energy
derivatives, significant efforts have been directed toward devel-
opment of analytical procedures for computing the geometric
(and magnetic) derivatives of molecular response properties,
which are important for (accurate) determination of various
observables and spectroscopic constants. For instance, analytic
computation of the gradient of the dipole moment, required for
calculating infrared intensities in the double-harmonic approx-
imation, was pioneered by Bratoz in 1958 with efficient wave
function implementations appearing from the mid-1980s.>**%*°
Likewise, the gradient of the electric dipole polarizability is
needed for vibrational Raman intensities>* and for description
of the related coherent anti-Stokes Raman (CARS)**"%3*! and
vibrational Raman optical activity ROA>*** techniques. Geometric
derivatives of second-order and higher order response functions are
needed to evaluate their vibrational corrections within the
Born—Oppenheimer approximation, as discussed in more detail in
section 6. The first geometric derivative of the transition dipole
strength yields information on how the motion of the nuclei affects
the UV spectrum (or the one-photon absorption) of a molecule
through the Herzberg—Teller contribution—that is, the linear
dependence of the transition dipole moment on the nuclear
coordinates, which must be taken into account to describe how
forbidden transitions become allowed by vibronic effects.**~*
Finally, the first geometric derivative of the excited-state energy can
be used to determine and characterize the equilibrium geometry of a
system in an excited electronic state, as discussed in section 5.8.5.

At present, most implementations of polarizabilities, hyperpo-
larizabilities, and transition-moment geometric gradients have
been presented at the Hartree—Fock and Kohn—Sham levels of
theory,””%33%34573%7 yith the notable exception of the coupled-
cluster implementation of the polarizability gradient presented
by O'Neill et al. in 2007,>** which includes a general string-based
program for calculation of Raman intensities for arbitrary
coupled-cluster and CI methods.

5.2. Nuclear Magnetic Resonance

Evaluation of NMR parameters has become an important
application of quantum chemistry over the last two decades. In
the present subsection we consider the ab initio evaluation of
the two basic parameters of high-resolution NMR: nuclear
shielding constants and indirect nuclear spin—spin constants;
in addition, we consider here the nuclear spin—rotation con-
stants of microwave spectroscopy, which conceptually and
computationally are closely related to the nuclear shielding
constants.

Consider a closed-shell molecule in the presence of an external
field B along the z axis, with nuclear spins I related to the nuclear
magnetic moments My as in eq 55. Assuming free molecular
rotation, the nuclear-magnetic energy levels can be reproduced
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by the following high-resolution NMR spin Hamiltonian

H™R = — %' v A1 — 0x)Bl, .
K

+ Y Vievih K lg 1
K>L

(588)

where we introduced the nuclear shielding constants 0 and the
(reduced) indirect nuclear spin—spin coupling constants Kx.
Whereas the first term represents the Zeeman interaction of the
nuclei with the external magnetic field, the second term repre-
sents the interactions between the nuclear moments. This is an
effective nuclear spin Hamiltonian: it reproduces NMR spectra
without considering the electrons explicitly. In experimental
work the parameters 0x and Kgy, are adjusted to fit the observed
spectra; here, we consider their evaluation using molecular
electronic-structure theory. For specialized reviews, see refs 6
and 349.

5.2.1. Nuclear Shielding Constants. From a consideration
of the NMR spin Hamiltonian in eq 588 we find that the
shielding tensor of nucleus K is related to the second derivative
of the molecular energy with respect to the applied field B and the
nuclear magnetic moment My as

&E

A
dBdMy 3 ¥ Ok

(589)
The first term, which represents the coupling of the nucleus to
the magnetic field in the absence of electrons, arises from the
nuclear part of the Zeeman Hamiltonian H, of eq 65. The second
part of eq 589 is the nuclear shielding tensor 0 and describes the
modification to the Zeeman interaction introduced by the
electrons. From an inspection of the molecular electronic Breit—
Pauli Hamiltonian in eq 57 we note that there is a second-order
diamagnetic coupling from Hpys in eq 72 and first-order cou-
plings of the electrons with the field in the Zeeman operator H,
of eq 65 and with the nuclei in the paramagnetic spin—orbit
operator H,, of eq 67, yielding (with the gauge origin at O and
omitting summation over electrons for clarity)
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where the Rayleigh—Schrodinger expression, valid for closed-
shell states only, was derived by Ramsey in 1950.>*° By symmetry
there are no spin contributions from H, and H, for closed shells.
The summations are therefore only over singlet excited states, as
indicated by the summation indices ns.

The first term in eq 590 is the diamagnetic contribution to the
shielding. With the gauge origin at the nucleus in question its
isotropic component is positive and represents the shielding
arising from induced currents in the unperturbed electron
density according to Lenz’s law, opposing the applied field.
The second, paramagnetic contribution in eq 590 arises from
the induced electronic magnetic moment (wave function re-
laxation), which typically aligns with the field and hence opposes
the diamagnetic term. Since the nuclear shielding constants arise
from a hyperfine interaction between the electrons and the nuclei
it is proportional to a® & § x 10° and is measured in ppm. For
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'S systems (closed-shell atoms) the paramagnetic term vanishes
completely and the shielding is given by the Lamb formula: oy =
a*(0|rx'|0)/3.

In practice, the shielding constants are not evaluated from the
sum-over-states expressions in eq 590 but from the response-
theory expression, taking the derivative of the energy with respect
to the external magnetic field B and the nuclear magnetic
moments My. According to the 2n + 1 rule only first-order
responses are needed; to reduce costs we evaluate these for the
three magnetic field directions; for very large molecules other
strategies may be important when only a few shielding constants
are of interest.>*! To avoid gauge-origin problems, London
orbitals***"**? (or some equivalent scheme®>~**%) must be
used for all but the smallest systems.

In the following we review recent computational advances in
the study of shielding constants. Although this field is dominated
by Kohn—Sham theory,**®**' MP2 theory with London
orbitals>®* remains a standard method for shielding calculations,
providing accurate results at a reasonable cost; moreover, as in
many other areas of computational chemistry, the most accurate
results are obtained using coupled-cluster theory. For develop-
ments up to 2002, see refs 6, 249, and 363; we also note the more
recent perspective article by Vaara.*** In the following we restrict
ourselves to the most recent developments in wave function
theory for calculation of shielding constants.

During the past decade most developments in high-level
calculations of NMR shielding constants have been carried out
at the coupled-cluster level of theory. In particular, Kallay and
Gauss implemented the calculation of NMR shieldings at
arbitrary excitation levels for coupled-cluster and CI wave
functions.”®" The quality of the results that can be obtained
can be seen from Tables 1 and 2. Although higher order
excitation levels give significant corrections to the shielding
constants, these tables highlight the excellent performance of
the CCSD(T) method for shielding constants.

For highly accurate calculations of nuclear shielding constants
inclusion of zero-point vibrational corrections is important.>*®~ 3
These corrections can be on the order of 3—5% and larger than
errors arising from approximations in the CCSD(T) model.
Ruud et al.>* noted that the zero-point vibrational correc-
tions for functional protons are transferable between molecules
since the protons vibrate almost independently of the molecular
skeleton. Both harmonic and anharmonic corrections to the
zero-point vibrational corrections can be important. An approach
such as the vibration mode following (VMF) method,*”® which
only includes harmonic contributions, often gives an incorrect
description of the vibrational effects, both their sign and magnitude.
An alternative to perturbation theory for zero-point vibrational
corrections is the Feynman-path integral Monte Carlo method,
but the large number of configurations needed to perform an
accurate vibrational averaging have prevented the use of methods
more accurate than Hartree—Fock theory for the vibrationally
averaged shielding constants.>”"*”

A number of CCSD(T) benchmark studies with perturbational
zero-point vibrational corrections have been presented,*” " yield-
ing an agreement with experiment within 1—2 ppm. By
parallelizing the CCSD(T) calculation of shielding con-
stants,**® Harding et al. showed that only by combining highly
accurate equilibrium geometries with CCSD(T) calculations in
quadruple-§ basis sets were the shielding constants of the
1-adamantyl cation obtained in good agreement with experi-
mental observations.**®
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Table 1. Isotropic (¢) and Anisotropic (Ag) NMR Shielding
Constants (in ppm) of the BH Molecule Calculated at
Different Levels of Electronic-Structure Theory at a Bond
Distance of 123.24 pm in the TZP+ Basis with All Electrons
Correlated”®"%

o(''B) Ac(*'B) o('H) Ac("H)
HF —261.3 690.1 24.21 14.15
MP2 —220.7 629.9 24.12 14.24
CCSD —166.6 549.4 24.74 13.53
CCsD(T) ~1715 5552 24.62 13.69
CCSDT —171.8 557.3 24.59 13.72
CCSDTQ —170.1 554.7 24.60 13.70
CISD —182.4 5729 24.49 13.87
CISDT —191.7 587.0 24.35 14.06
CISDTQ —170.2 554.9 24.60 13.70
FCI —170.1 554.7 24.60 13.70

Table 2. Coupled-Cluster Convergence of Isotropic () and
Anisotropic (Ag) NMR Shielding Constants (in ppm) in CO
Calculated in the cc-pVDZ Basis with a Frozen Core®

CCSD CCSD(T) CCSDT CCSDTQ CCSDTQS — FCI
o(*C) 3223 3591 35.66 36.10 36.14 36.15
Ao(*C) 36130 35610 35647  355.85 35580  355.79
Ao('’0) —13.93 —13.03 —13.16 —1281 —1291 —1291
Ao(70) 63601 63455 63475 63422 634.52  634.35

Although London orbitals are today the most popular method
for ensuring gauge-origin-independent calculations of magnetic
properties, a number of different schemes have also been
proposed.*>*~**? Among these the method of continuous trans-
formation of the gauge origin of the current density by setting the
diamagnetic contribution to zero (CTOCD-DZ)*7?%® has
gained popularity for correlated calculations since it ensures,
for properties linear in the external magnetic field, gauge-origin
independence without introducing field-dependent two-electron
integrals. Sauer and co-workers implemented the CTOCD-DZ
approach at various correlated levels, including the MCSCF and
SOPPA*®" and CCSD*** levels of theory. Garcia et al.*** com-
pared the effect of coupled-cluster truncation on nuclear shield-
ings with an orbitally unrelaxed scheme using the CTOCD-DZ
method, different from the energy-derivative approach used by
Kallay and Gauss,”®" in which orbital relaxation is included in the
calculation.

For high accuracy in the calculated shielding constants a
carefully selected basis set that properly describes the outer-
core—inner-valence region is necessary; at the same time, it must
be constructed in a manner that allows for a systematic improve-
ment in the description of the correlation energy. Manninen and
Vaara developed a technique for designing basis sets for molec-
ular progerties with special requirements in the core or valence
regions>"* based on the use of completeness profiles for measur-
ing basis-set saturation in selected exponent ranges.”® The
authors applied the developed basis sets to calculation of mol-
ecular magnetizabilities, nuclear magnetic shieldings, and indirect
spin—spin coupling constants.’** We also note that several
studies of basis-set extrapolation schemes for NMR shielding
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constants have been presented,*** %" but these have not gained
the same popularity as for energetics.””**""

A novel application of the highly accurate methods that have
been developed for nuclear magnetic shielding constants is the
combination of measurement and theory to revisit and reassign
values of nuclear magnetic moments. The tabulated magnetic
moments have usually been derived from magnetic resonance
measurements of atomic or molecular species with an assumed
value for the diamagnetic shielding of the atomic species. As
many of these values are from the 1950s, their accuracy is often
low. Jackowski, Jaszunski, and co-workers performed important,
pioneering work in revising and proposing new values for the
nuclear magnetic moments of 3¢, 1A'II)\T, N, 170, "F, *'P, and
338 392296014 73Ge, and '°B and 'B.3%

With the development of accurate methods for calculating
NMR shielding constants there has been increased interest in
smaller corrections to these constants. Whereas shielding polar-
izabilities (the derivatives of the shielding constants with respect
to external electric fields) previously attracted interest as a means
of rationalizing intermolecular and solvent effects on shielding
constants, these effects are now calculated explicitly and we are
aware of only one recent correlated study of shielding
polarizabilities.**> To complement this study, Vaara, Manninen,
and Lounila investigated the magnetic-field dependence of
atomic systems to explore potential consequences for high-field
NMR spectrometers.””® Recently, Kjer et al.**” explored the
validity of the multipole shielding polarizabilities in combination
with a reaction-field approach against the solvent effect induced
by a polarizable molecular force field, showing that, by a
fortuitous error cancellation, the best results are obtained by
including only the linear electric-field effects.

Despite its smallness the effect of parity violation on nuclear
magnetic shielding constants has been investigated to establish
whether NMR spectroscopy is suitable for observing the effects
of parity violation in chiral molecules.**®* Both perturbation
theory based on a nonrelativistic reference frame®”® and four-
component theory have been used to investigate these effects.*”

Following the proposal of Buckingham and Parlett,**°
Jaszuniski and Rizzo, on the other hand, investigated the effect
of circularly polarized light on nuclear magnetic moments
(a magnetic moment-induced Faraday effect) using MCSCF
quadratic response functions.**'

For heavier elements, relativistic effects are important, not
only for the shielding of the heavy atoms but also for light
elements in close proximity to a heavy element. This heavy-atom
effect arises because spin—orbit coupling at the heavy atom
induces a spin polarization of the electrons that couples (by the
Fermi-contact and spin—dipole mechanisms) to the nuclear
magnetic moment of the nearby light atom in the same way that
this nuclear moment couples to the Sfin polarization induced by
other nuclei; indeed, Kaupp et al.* demonstrated the close
connection between the spin—spin coupling constants and the
spin—orbit corrections to the shielding constant of light ele-
ments in the vicinity of heavy atoms.

Vaara and co-workers performed a complete perturbation
analysis of the relativistic corrections to order a.* to the shielding
constants and gresented calculations at the MCSCEF level of
theory.2¢%*>~** Nakatsuji and co-workers developed a general-
ized unrestricted quasirelativistic approach based on a mixed
analytic and numerical scheme for calculation of relativistic nuclear
magnetic shielding constants**>**® and extended it to the inclusion
of electron correlation at the MP2 level of theory.*””

The past decade has seen the emergence of two- and four-
component methods for calculation of nuclear magnetic shield-
ing constants. Much of this development has taken place
using Kohn—Sham theory, but we focus here on the wave
function-based developments. In the relativistic domain the
Dirac operator is linear in the momentum operator; conse-
quently, the shielding constant is fully described by a linear
response function, without an apparent diamagnetic contribu-
tion. However, as discussed by Aucar et al,,**® the diamagnetic
term arises from a redressing of the electrons in the presence of
the magnetic field, being described by the electron—positron
rotations in the linear response equations. However, the basis-
set convergence of these rotations is very slow. It may there-
fore be advantageous to ignore these rotations and instead
calculate the diamagnetic contribution through the Sternheim
approximation.409

An important issue in four-component calculations is the
balanced treatment of the large and small components. In the
absence of magnetic fields it is useful to enforce that the small and
large components are related through the restricted-kinetic
balance condition,*'*'" often enforced in the calculation and
design of dual family basis sets*'> or explicitly in the integral
evaluation.*'® Given that the small and large components are
related by the momentum operator, application of an external
magnetic field extends this condition to what is known as the
restricted magnetic balance condition. Because it is difficult to
design basis sets that fulfill this extended condition, unrestricted
kinetic balance is instead often used to ensure accurate shielding
constants,**® leading to the need for using much larger basis sets.
An elegant solution to this problem was recently proposed by
Komorovsky et al.,*'* who enforced relativistic kinetic balance in
calculations at the integral level, extending the approach to
include contributions from London orbitals.*'*~*' We here
also note that Ilias et al.*'” presented gauge-origin-independent
calculations of nuclear shielding constants at the four-component
Dirac—Coulomb Hartree—Fock level of theory using London
atomic orbitals.

Kudo et al.*'"**'? presented calculations of shielding constants
using the method of NESC tensors by Filatov and Cremer,>**
giving results in the zero-order regular approximation (ZORA)***!
and in the second-order regular approximation (SORA) very
similar to those obtained using the infinite-order two-component
coupled Hartree—Fock method.*** Kato et al.*** presented four-
component relativistic calculations of nuclear shielding constants
at the CISD and CCSD levels of theory but without strictly
enforcing gauge-origin invariance. We also note that Aucar
and co-workers presented relativistic four-component calcula-
tions of nuclear shielding constants at the Dirac—Coulomb
Hartree—Fock level of theory.*****

Calculation of current densities arising from application of an
external magnetic field to a molecular electron density has been
extended to the correlated levels of theory using London atomic
orbitals, both for closed-** and for open-shell species.**” It is
noteworthy that London orbitals are not sufficient to ensure
current conservation,*” but they do lead to a significantly reduced
current nonconservation.*® Bast et al.*** extended the scheme
for calculating induced magnetic currents to the relativistic four-
component Kohn—Sham level of theory but using a common
gauge-origin approach. Jusélius and Sundholm advocated the use
of calculated current densities to define the aromatic character of
molecules**” as an alternative to the nucleus-independent chemi-

cal shift.**°
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We end the discussion of computational models for NMR
shielding constants by considering developments aimed at large
molecules based on Hartree—Fock and Kohn—Sham theories.
Gauss and Werner presented in 2000 a local GIAO-MP2
approach for calculation of NMR shielding constants.*'
Although promising results were obtained, there does not appear
to be many applications of the formalism. Ochsenfeld and co-
workers developed linear-scaling methods for Hartree—Fock
calculations of shielding constants using London atomic
orbitals.'***? Recently, Beer, Kussmann, and Ochsenfeld*®"
extended this approach to achieve sublinear scaling by utilizing
the locality of the perturbed density arising from the nuclear
magnetic moment of interest. Loibl, Manby, and Schutz recently
presented a density-fitting Hartree—Fock code for calculation of
NMR shielding constants using London orbitals.*>* We also note
that Morokuma and co-workers extended their “our own n-layer
integrated molecular orbital and molecular mechanics” (ONIOM)
multilevel method to the two-level GIAO-MP2:GIAO-HF ap-
proach for shielding constants.*****

5.2.2. Nuclear Spin—Spin Couplings. To determine the
coupling between the nuclear magnetic moments My and M;, we
differentiate the molecular electronic energy with respect to
these magnetic moments yielding

d’E

— =D K 591
AMedM, kL + Kkr (591)

where Dg; and Ky are the direct and indirect nuclear spin—spin
coupling tensors, respectively. The direct coupling, which arises
from the purely nuclear part of the spin—spin operator H, in
eq 68, occurs by a classical dipole mechanism

Dy = &Ry (Rp Iy — 3Rk Ry, )~107 "% au (592)

However, since this coupling is anisotropic it vanishes in
isotropic media such as gases and liquids and does not contribute
to the high-resolution NMR spin Hamiltonian of eq $88. Instead,
the spin—spin coupling in the NMR spin Hamiltonian is
mediated by the electrons and is fully described by the indirect
coupling tensor in eq 591.

From inspection of the Breit—Pauli Hamiltonian in eq 57 we
find that the nuclear moments couple quadratically to the
electrons in the diamagnetic operator Hypy of eq 73 and linearly
to the electrons in the spin—orbit operator Hy, of eq 67 and in
the spin—spin operator H, of eq 68, yielding the following
expression for the indirect nuclear spin—spin coupling
constant™*
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where we omitted summations over electrons for clarity and
where ng and nr denote singlet and triplet excited states,
respectively. The first term is the diamagnetic spin—orbit con-
tribution to the spin—spin coupling constant, which arises from

the diamagnetic Hypy operator in eq 73. The second term in
eq 593 is the paramagnetic spin—orbit contribution and arises
from the part of the spin—orbit operator H, in eq 67 that
represents the coupling of the nuclear spins with the orbital
motion of the electrons 0*My+ 1 /rix. As this operator does not
contain electron spin, the first summation in eq 593 is only over
singlet states. The paramagnetic and especially diamagnetic
orbital contributions are usually but not invariably small; for
large internuclear separations they cancel.*” The second sum-
mation in eq 593 arises from the hyperfine part of the spin—spin
operator H in eq 68, with summation over triplet states only.
With a large prefactor (877/3)” & 70.2, the isotropic Fermi-
contact—Fermi-contact mechanism often dominates short-range
spin—spin coupling constants, whereas the mixed Fermi-contact—-
spin-dipolar mechanism dominates the anisotropic part of the
coupling tensor.”*” However, there are many exceptions to these
rules, and none of the contributions to the spin—spin coupling
constants can be a priori neglected. Since the indirect nuclear
spin—spin coupling constant arises from hyperfine interactions it
is exceedingly small: K A 10~ ° au. Experimentalists usually work
in terms of the isotope-dependent indirect nuclear spin—spin
coupling constants Jx7, = hy ey Kir/ 4% ~ 1 Hz, see eq 588.

The indirect nuclear spin—spin coupling constants are eval-
uated using response theory, calculating the second derivative of
the electronic energy with respect to the nuclear magnetic
moments. According to the 21 + 1 and 2n + 2 rules, only first-
order responses are needed. Thus, for a molecule containing Ny,
magnetic nuclei, 3Ny, response equations must be solved.
However, to take advantage of spin symmetry, the Wigner—
Eckart theorem is usually invoked, yielding three singlet and six
triplet response equations for each nucleus, each of smaller
dimension (the same as for a magnetic field perturbation, for
example). Unlike for calculations of nuclear shielding constants,
London orbitals are not needed for spin—spin calculations since
no external magnetic field is involved.

Apart from requiring the solution of a large number of
response equations, evaluation of indirect nuclear spin—spin
coupling constants poses several challenges. First, nuclear spin—
spin coupling constants are extremely sensitive to an inadequate
description of static electron correlation.® As a result, the
restricted Hartree—Fock model is unsuitable for spin—spin
calculations, producing erratic results. Therefore, only correlated
wave function models give reliable spin—spin constants, adding
to the cost of such calculations. With the emergence of DFT asa
computational model in quantum chemistry,”® **' it became
possible to perform spin—spin calculations reliably, at low cost,
by providing a description less affected by triplet instabilities than
Hartree—Fock theory; for a recent discussion of this point, see
ref 442. In the present review we concentrate on high-accuracy
calculations of nuclear spin—spin coupling constants by wave
function theory. In Table 3 we listed calculated spin—spin
coupling constants for a set of small molecules.

The first accurate calculations of indirect spin—spin couplin§
constants were the CI calculations on HD by Kowalewski et al.**
in 1974. More recently, the FCI model has been applied to
evaluate the coupling constant of the helium dimer*** and the
BH molecule.** To study larger molecules, MCSCF theory has
been widely used following the first implementation by Vahtras
et al. in 1992.**° For small molecules such as C,H, hi hly
accurate results may be obtained with MCSCF theory;**” for
larger systems it becomes difficult to choose an adequate active
orbital space.**® Indeed, after introduction of Kohn—Sham
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Table 3. Calculated Spin—Spin Coupling Constants
(in Hertz) Compared with Experimental Values”

RHE CAS RAS SOPPA CCSD CC3 exp* vib
HF  Yur 592 480 481 468 461 461 476 —34
CO Yeo 134 —28.1 —393 —454 —383 —373 —383 —1.7
N> w1750 =57 —91 —239 —204 —204 —19.3 —1.1
H,0 You 637 SLS 471 495 484 482 528 —33
Jau  —19 —08 —06 —07 —06 —06 —07 0.1
NH; "Jau 614 487 502 SLO 481 508 —0.3
g —19 —08 —09 —09 —10 —09 0.1
CH, Yec 16720 996 905 925 923 878 12
Yemw 2497 SLS 502 520 507 500 1.7
Jeu —1893 —19 —05 —10 —10 —04 —04
e —287 —02 01 0.1 0.0 02 00
s 300 10 10 10 1.0 09 0.1
¥en 333 15 15 L5 LS 14 02
|A| abs 1803 33 16 18 12 16  *atRe
% 5709 60 14 24 23 6

“ For references to calculated and experimental values, see ref 349.

theory for calculation of spin—spin coupling constants in the
1990s™*~**! MCSCF theory has played a less prominent role in
this area.

For high-accuracy calculations of spin—spin coupling con-
stants, coupled-cluster theory is the preferred method. At the
basic CCSD level of theory there are two implementations for
spin—spin calculations: the EOM-CCSD implementation by
Perera, Sekino, and Bartlett** and the analytic second-derivative
implementation by Stanton and Gauss.***** To avoid problems
associated with triplet instabilities, derivative-based coupled-
cluster calculations of spin—spin coupling constants should be
performed in an orbital-unrelaxed manner, without relaxing the
orbitals in response to the triplet perturbations; the effects of
orbital relaxation are instead described by means of the coupled-
cluster singles amplitudes.'*® Beyond the CCSD model the first
implementations of coupled-cluster theory for calculation of
spin—spin coupling constants are the CCSDT, CCSD(T), and
CC3 implementations of Auer and Gauss.'*® Being suited to an
unrelaxed orbital treatment, the CC3 model is more appropriate
than the CCSD(T) model for spin—spin coupling constants.

The SOPPA model has played an important role in the study
of indirect spin—spin coupling constants, being first applied by
Geertsen and Oddershede already in 1984.*° In the related
SOPPA(CCSD) model the MP2 amplitudes are replaced by
CCSD amplitudes, yielding more accurate coupling con-
stants.””***” The MP2 model has also been used for spin—spin
coupling constants but with much less success.*"**>

Indirect nuclear spin—spin coupling constants depend sensi-
tively on the molecular geometry and often have large vibrational
corrections. Indeed, with the quality of today’s electronic-
structure calculations the differences between the calculated and
the experimental coupling constants are often smaller than the
vibrational corrections. For example, in calculations of the C=C
coupling constant in acetylene it was estimated that the residual
error does not exceed 2—3 Hz,**” whereas the vibrational correc-
tion is f?’reater than 10 Hz.*** We also note the work by Astrand
et al** who found a large zero-point vibrational correction of
—25 Hz using MCSCEF theory in the HF molecule. In similar studies,
Wigglesworth et al.*** applied SOPPA(CCSD) theory to C,H,
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while Jordan et al.*** used EOM-CCSD theory to study the
NH- - -N coupling in CNH:NCH. Because of the high cost of
such calculations, DFT provides an attractive alternative to wave
function methods for vibrational corrections.****” Indeed, an
attractive approach is to calculate the equilibrium spin—spin
coupling constants using high-level wave function theory but to
generate their rovibrational corrections using Kohn—Sham theory.

5.2.3. Nuclear Spin—Rotation Constants. The spin I of
nucleus K can also interact with the magnetic moment generated
by the rotation of the molecule. This rotationally induced
magnetic moment is a non-Born—Oppenheimer effect, arising
from a slight decoupling of the electronic and nuclear rotation
moments.”® The resulting interaction is one of the mechanisms
responsible (together with the nuclear quadrupole coupling) for
the hyperfine structure (i.e., splitting or shift of the spectral lines)
of molecular rotational spectra. To describe this splitting quan-
tum mechanically the following effective Hamiltonian was in-
troduced by Flygare**®

Hysr = Z IIT<CKJ (594)
K

where J is the total rotational angular momentum of the molecule

and Cy is the nuclear spin—rotation (NSR) tensor of nucleus K,

which contains both a nuclear and an electronic contribution

Ck = C¥° + CY (595)

Whereas the nuclear contribution depends only on the nuclear
framework

R I3 — RigR[,

(596)
Rix

Cy = a)/KI_I Z
L#K

where I is the inertia tensor, the electronic contribution can be
expressed as a second derivative of the electronic energy

co — &’E
o \dikdl ) o

It is most efficiently calculated using analytic derivative techni-
ques, although, in their early work, Oddershede and co-workers
calculated NSR constants using the polarization propagator
approach.**®*! Use of perturbation-dependent basis functions,
known as rotational London orbitals and defined as

(597)

%,(r,B, J) = exp[ —i(Ay + A))-xy,(r) (598)
where y,,(r) is a standard Gaussian and where
1 _
AEZEBX(R#—O), Al = —T'JxR, (599)

is recommended to improve basis-set convergence. Note, how-
ever, that there is no gauge-origin problem in calculations of NSR
constants as the origin for the orbital magnetic dipole operator is
dictated by the point about which the molecule rotates, that is,
the center of mass of the molecule. Use of rotational London
orbitals in calculations of NSR tensors and rotational 8 tensors
(vide infra) was proposed in 1996 by Gauss et al.*** at the
Hartree—Fock level of theory, later extended to the coupled-
cluster*®® and MCSCF****%* methods.

The recent review by Puzzarini et al. contains a detailed
discussion of the computational requirements for NSR tensors.’
In short, the CCSD(T) approach is the method of choice for
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accurate NSR-tensor calculations; moreover, despite the use of
rotational London orbitals, large basis sets may still be needed for
high accuracy. Accurate calculations of NSR tensors have proven
important in assisting in the assignment of experimental rota-
tional lines in various systems; in ref 466, for instance, such
calculations have guided the revision of the experimental result
for CF,.*” Other examples are reviewed in ref 3.

The NSR tensor is used to determine an absolute NMR scale.
The need for an absolute NMR scale stems from the fact that,
experimentally, only the chemical shift, that is, the difference in
the magnetic shielding for a nucleus in two different chemical
environments, is measured, preventing a direct comparison of
experimental and computational results, see refs 468 and 469. An
absolute shielding scale is established based on the following
relation between the paramagnetic part of the shielding constant
for a given nucleus and the electronic part of the NSR tensor
= - e (600)

3megr

para

Experimental determination of the absolute chemical-shielding
constant thus consists of several steps, where the only purely
experimental one is measurement of the molecular rotational
spectrum and extraction of the NSR tensor, Cg, for each nucleus
K from its hyperfine structure.*”® By subtracting rovibrational
contributions from Cy, the purely electronic part Cg is obtained,
which in turn can be converted to the paramagnetic shielding
olpim. Adding the diamagnetic contribution 0%, from accurate
quantum-chemical calculations and correcting for rovibrational and
temperature effects, the experimental absolute shielding constant for
each nucleus can be determined and compared with the corresponding
purely computational results, see, for instance, refs 366 and 470—473.

5.3. Electron Paramagnetic Resonance

The EPR effective spin Hamiltonian including contributions
from the nuclear spins and ignoring contributions from the
nuclear quadrupole moments may be written as*’*

HEPR = H* + HsZ + HZFS + th + HnZ (601)

Like the NMR effective Hamiltonian in eq 588 the EPR
Hamiltonian contains no reference to the electronic structure
of the molecule. The different contributions to the EPR Hamil-
tonian thus describe phenomenologically the interactions pre-
sent in the molecule.

The first term H™ in eq 601, the exchange contribution,
accounts for the difference in energy between electronic states of
different multiplicity, and the Hamiltonian

H™ = — 2]51 ) (602)

is often referred to as the Heisenberg Hamiltonian. The study of
spin states in molecular complexes is an active research field in
which correlated wave function methods play an important role
because of the strong multireference character of intermediate-
spin complexes. Although such spin states can be determined
with the spin-flip coupled-cluster method of Krylov,”*® most ab
initio calculations are performed by calculating the energy
differences between explicitly optimized states using multirefer-
ence methods.””>"*® As this review focuses on quasi-energy
response methods we do not consider this contribution to the
EPR effective spin Hamiltonian any further, referring instead to
the review by Neese.”

The second contribution to the Hamiltonian in eq 601 is the
electron spin-Zeeman interaction, describing the interaction

between the magnetic moment of the electron with the external
magnetic induction

HY = u,S"gB (603)

where g is the electron g tensor and S the total effective spin of the
system. For a free electron the strength of this interaction is
determined by the free-electron g factor of eq 65, yielding g = g.Is =
215, see eq 28. However, electrons in a molecule experience a
local magnetic field, arising from a partial shielding (or
deshielding) by the other electrons in the molecule, which leads
to a shift relative to g,

g = gL + Ag (604)

We note that g in general is a nonsymmetric matrix.
The third contribution to the EPR spin Hamiltonian in eq 601
is the spin—spin-interaction operator

H* = §™DS (605)

which gives rise to the zero-field splitting of the EPR spectrum,
describing the dipole interaction between the spin magnetic
moments of unpaired electrons. This contribution is thus only
present in states with more than one unpaired electron, leading
to a splitting of the spin sublevels of a given spin state.

The interactions of the spin magnetic moments of the
electrons with the nuclear magnetic moments give rise to
hyperfine structure in the EPR spectrum described by the
operator

B = Y (ARSTIx + STAYIK) (606)
K

The isotropic first part has the form of a contact interaction and
measures the spin density at a given nucleus, whereas the
anisotropic second part corresponds to the dipolar interaction
of the electron spin magnetic moment and the nuclear magnetic
moment. The last term in eq 601 is in general not observable in
EPR spectroscopy because of the increased line widths due to the
presence of the unpaired electrons. The nuclear Zeeman inter-
action H™” corresponds to the last term in eq 65. It is analogous
to the interaction included in the NMR effective Hamiltonian
eq 588, where instead the shift is thought of as arising with
respect to the bare nuclear g factor as described by the shielding
constant.

5.3.1. Electronic g Tensors. For molecules with a single
open-shell electronic doublet state and high-spin radicals in the
strong-field limit the energy difference between the eigenvalues
of the effective EPR Hamiltonian can be written as*’*

AE = u; VBTGB (607)

where we introduced the symmetric g tensor G = gg', which
contains both the orbital and the electron spin contributions that
contribute to the effective spin and thus correspond to the
quantity measured in experiment. Because the unperturbed state
is degenerate, degenerate perturbation theory needs to be
employed for calculation of the electronic g tensor.*”***

In a nonrelativistic treatment the electronic g tensor reduces to
the free-electron g value. All corrections to the electronic g tensor
are therefore relativistic in origin. Furthermore, in a relativistic
two- or four-component framework the electronic g tensor can
be calculated as an expectation value of the electronic spin
density, making its calculation fairly straightforward.**' ~**> By
contrast, for calculations that start from a nonrelativistic
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reference wave function the leading order relativistic corrections
are accounted for by perturbation theory. To order o in the
perturbation we obtain the following correction to the free-
electron g tensor

Ag — AgSO 4 AgRMC + AgGC + O(a4)

where the spin—orbit, relativistic mass-correction, and gauge-
correction contributions are given by

(608)

SO _ 2 orb _
Agflﬁ - (Sz(max» <(de /dB)aa Hy,, /3» (609)
RMC _ 2
Agaﬂ - (Sz(max» <0|(dHMVBs/dB)aﬁ|O> (610)
Agas = 5 (max)) (0| (dHsps/dB) o5/0) (611)

where H2™ is the orbital part of the Zeeman operator in eq 65,
Hypvps is the diamagnetic part of the mass—velocity operator in
eq 74, and Hg, is the diamagnetic part of the spin—orbit operator
in eq 75. (S.(max)) corresponds to the maximum spin projection
on the z axis for the given spin state. The spin—orbit contribution
Ag®® usually dominates, representing the interaction of the
spin—orbit operator Hy, with the orbital part HP® of the Zeeman
Hamiltonian H, in eq 65. For more details, see refs 40 and
484—486. Higher order relativistic corrections have also been
derived**® and shown to be important in oxo-molybdenium (V)
and oxo-tungsten(V) complexes.482

Most calculations of electronic g tensors employ spin-unrest-
ricted models for which conventional response theory can be
used to calculate the relevant quantities from a nonrelativistic
wave function, see refs 487 and 488. Spin-restricted models have
also been applied, but it is then important to ensure that the
triplet operators acting on the open-shell reference state properly
take all possible excitations into account.**

Multireference CI and MCSCF wave functions have been used
to calculate the g tensor of small molecules, see, for example, refs
489—495. In recent years there has been increasing interest in the
calculation of electronic g tensors at the ab initio level of theory.
Neese introduced spectroscopy-oriented multireference CI
(SORCI) theory**®*” using a sum-over-states approach. A
sum-over-states approach based on the spin—orbit-restricted
active space—state interaction (SO-RASSI) model*® was intro-
duced by Bolvin,*”?*?°% who showed that the invariance of the
Zeeman Hamiltonian under symmetry transformations and its
continuous change with the variations of the parameters of the
system (geometry and crystal field) lead to a unique determina-
tion of the elements of the g tensor, in contrast to previous
assumptions.”' The approach of Bolvin, in which the spin—orbit
interaction has been applied to the electronic states prior to
evaluation of the electronic g tensor, was compared at the
multistate CASPT?2 level’*>3% to the approach of Neese and
Solomon, where an effective Hamiltonian %pproach is used to
include spin—orbit effects to second order.>**

Very recently, Gauss, Kallay, and Neese presented a coupled-
cluster linear-response approach for calculating electronic g
factors for arbitrary excitation levels, based on an unrestricted
Hartree—Fock reference wave function.** This development
allows for a critical assessment of the ability of various Kohn—
Sham exchange-correlation kernels to model the effect of corre-
lation on electronic g tensors.

600

In approximate theories the computed electronic g tensor will
in general be origin dependent, since it depends on the external
magnetic field. In exact theory the origin dependence of the
orbital magnetic dipole operator is canceled by the origin
dependence of the gauge-correction term. This means that in
approximate calculations care should be exercised to ensure
gauge-origin independence, for instance, using London
orbitals,*81483505,506 1y general, however, electronic g tensors
appear to be less sensitive than other properties involving
magnetic-field perturbations to the choice of gauge origin (see,
for instance, ref 507).

5.3.2. Zero-Field Splittings. In degenerate perturbation
theory the zero-field splitting of a spin-degenerate energy level
2SR s evaluated from the eigenvalues of the matrix

28 i 28 + 1yyyi
Hg,FS:< +1]_sz|HSS| + ]_116>

28 i A A 28 j
Ly oy OO )
il lEn _ 25+ IEO

(612)

where “W¥ is a zero-order wave function of spin multiplicity A
and spin projection k. The zero-field splitting, which occurs only
in molecules with two or more unpaired electrons, has two distinct
contributions. The first contribution in eq 612 is an expectation
value of the two-electron spin—spin dipole—dipole coupling operator
of eq 68, whereas the other term is the indirect interaction between
the spin—magnetic moments of two electrons, mediated by the
one- and two-electron contributions of the spin—orbit operator
in eq 67. In most cases the spin—orbit contribution dominates
the zero-field splitting, in particular, if heavier elements are
involved. For transition-metal complexes the spin—orbit effect,
often dominated by a few close-lying electronic states, can be
included in a limited sum-over-states expansion or using ligand-
field theory.**® For molecules with weak spin—orbit interactions
such as triplet-spin organic molecules, the electron spin—spin
interaction may dominate the zero-field splitting.>® However, in
transition-metal complexes the indirect spin—spin coupling has
also been shown to be important in some cases.

The perturbation-theory approach of Neese and Solomon has
also been applied to the calculation of zero-field splittings using a
sum-over-states methodology to calculate the linear-response
contribution to the zero-field splitting from Cl-like wave
functions.’®* A linear-response approach for calculating zero-
field splittings, also including the contributions from the direct
spin—spin dipolar interaction was presented by Vahtras et al.,*®
later extended to include solvent effects.’'®>'" Ganyushin et al.
demonstrated that the resolution of the identity approximation
could be efliciently used to reduce the four-index spin—spin
interaction integrals to three-index inte§rals, facilitating highly
correlated calculations on large systems.”'>

The group of Neese has been active both in developing
efficient methodology for calculating zero-field splittings for
multireference wave functions®”>"* and in providing benchmarks
for DFT approaches.’*”*'**"> Benchmark studies using
CASPT2/NEVPT2 methods®'®*"” and multireference wave
functions®'® have been presented in recent years. We note that
the calculation of zero-field splittings in DFT has been con-
troversial, with different expressions for the zero-field splitting
constants having been proposed;**”>'>*'? this controversy was
recently resolved by Schmitt et al.>*°

dx.doi.org/10.1021/cr2002239 |Chem. Rev. 2012, 112, 543-631



Chemical Reviews

5.3.3. Hyperfine Coupling Tensors. The EPR hyperfine
splitting constants

Ax = ARL, + AY (613)
of H" in eq 606 couple the electron and nuclear spins, providing
detailed information about the structure of radicals, in much the
same manner as shielding constants do in NMR spectroscopy.
The isotropic contribution to the hyperfine interaction A% and
the anisotropic contribution A}* in eq 613 arise from the
electron—nuclear Fermi-contact and the spin—dipole operators
in H, of eq 68, respectively. Both contributions are simple
expectation values of the respective operators

fc __ 74‘£ 2# o
AR = T R % (9,10(x)[9,X0| T, °|0)
(614)
sd _ 71 2 1 |31'K1'§ — r12<13|
AL =~ Eedin e o % (¢, ) |9,5(0|T,[0)
(615)

where the expectation values of the triplet excitation operators in
eqs 98 and 101 are elements of the triplet density matrix. There
are also relativistic corrections to the hyperfine coupling from the
diamagnetic operator Hyy, in eq 76; we refer to refs 521 and 522
for more details.

The EPR hyperfine coupling is governed by triplet perturba-
tions. Thus, as for the g tensor, it is common to use unrestricted
wave functions for describing the reference state, in which case
the hyperfine interactions can be calculated as regular expecta-
tion values, for example, from coupled-cluster wave functions in
an orbital-relaxed formulation.>*>>**

Correlated methods were presented early for the study of
hyperfine interactions using, for instance, symmetry—adag ed-
cluster CI (SAC-CI) theory >>**® and MRCISD theory.**" %
Kossmann and Neese recently presented a correlated approach
for calculating hyperfine coupling constants in larger molecules
based on the orbital-optimized SCS-MP2 method.>*® Orbital
optimization signiﬁcantlsy reduces spin contamination, whereas
spin-component scaling™" improves the dipolar hyperfine cou-
pling constants relative to the orbital-optimized MP2 method.

Hyperfine coupling constants can also be calculated from
spin-restricted wave functions, letting the system respond in an
unrestricted manner to the triplet perturbation.>** Within such a
restricted —unrestricted approach first-order properties are cal-
culated as a restricted expectation value but with an unrestricted
correction for the response to the triplet perturbation. First
implemented at the SCF and MCSCF levels of theory it has
recently been extended to Kohn—Sham theory.>

In general, the most severe basis-set requirements in calcula-
tions of hyperfine coupling constants come from the isotropic
hyperfine contribution, the anisotropic contribution being less
demanding. We mention, in particular, that there are basis sets
specifically designed for DFT calculations of hyperfine coupl-
ing constants (EPR-IIT).>** Alternatively, the Hiller—Sucher—
Feinberg identity can be applied to the Fermi-contact operator to
reduce basis-set requirements.”*> This approach and its exten-
sions have been explored by Rassolov and Chipman®**~** and
by Sundholm.>* There is a large computational activity on the
study of hyperfine couplings, especially using DFT; see the
review by Improta and Barone.
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5.4. Electric Multipole Moments

As discussed in section 2.2.5 the most important electric
multipole moments are the electric dipole moment g and the
(traceless) quadrupole moment @. The molecular dipole mo-
ment is the first nonvanishing electric moment for neutral
systems with an asymmetric charge distribution, whereas the
quadrupole moment is the first nonvanishing moment of non-
polar systems. In the gas phase permanent dipole moments are
usually determined from the shift in the rotational energy levels
caused by an applied electric field in high-resolution microwave
spectroscopy (the Stark effect®*"***) or from measurements of
the dielectric constant.>* Electric quadrupole moments are
typically obtained from measurements of an electric-field-gradi-
ent-induced-birefringence (EFGB) effect (anisotrolg‘y of the
refractive index) known as the Buckingham effect.>** Alterna-
tively, they can be deduced from the deflection of a molecular
beam by an electric or inhomogeneous magnetic field or in an
indirect manner from microwave Zeeman experiments.*>®

5.4.1. Electric Dipole Moments. Several benchmark studies
of the dipole moment of small- and medium-sized molecules
using high-accuracy methods, in particular, coupled-cluster theory,
have appeared over the last 15 years, examining the basis-set and
excitation-level requirements and the requirements for vibrational
corrections.”™>* We also note a study of the divergence of
Moller—Plesset theory of the dipole moments of BH and
HF>%*" The accuracy of the computed dipole moments with
state-of-the-art coupled-cluster methods is comparable to the experi-
mental accuracy, in a few instances, even superior to experiment,
prompting a revision of experimental results.>**

In a very recent benchmark study by Hellweg>** the accuracy
of dipole moments calculated from wave function methods based
on second-order perturbation theory was investigated for ground
and excited states, focusing on large systems, for which highly
accurate methods were still out of reach.”>* The MP2, CC2, and
ADC(2) methods were discussed, together with their SCS and
scaled-opposite-spin (SOS) variants. It was concluded that an
accuracy of about 0.2—0.1 D in the ground state (and about
0.3—0.2 D in the excited states) can be achieved with these
approaches.

As reviewed in ref 3, dipole moments govern the intensity of
rotational transitions in microwave spectroscopy. Theory can
therefore help to predict rotational transitions and intensities. In
general, reliable but not necessarily very accurate values are
sufficient for such purposes. An interesting application of com-
puted dipole moments is that presented in ref 553, where the
theoretical values were used to determine the relative stability
and abundance of the cis and trans forms of trisulfane and
1-oxatrisulfane, see also ref 3.

Accurate dipole moments are used in the investigation of
interaction-induced properties, see section 5.7.2. For instance,
the key role of the accuracy of the dipole-moment surface for
prediction of the infrared transition intensities in the Ar—HF
complex has been investigated by Jankowski and Ziolkowski.*>*

5.4.2. Electric Quadrupole Moments. Over the last two
decades development of more accurate electronic-structure
methods and advances in experimental techniques have re-
kindled interest in the ab initio determination of molecular
quadrupole moments.**> > As an example, the quadruépole
moment of N, determined by Graham and co-workers**® in
1998 was in noticeable disagreement with existing theoretical
and experimental values. Taking advantage of newly developed
high-accuracy methods for first-order molecular properties,
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Halkier et al.>®” performed a thorough investigation of the
quadrupole moment of N, proposing a new reference value, © =
(—4.93 £ 0.03) x 10 * C m® Simultaneously, Coriani et al.
identified the use of erroneous correction terms for the temperature-
independent contribution in the experimental values as the main
source of discrepancy between the theoretical and experimental
values, and proposed a revised experimental dipole moment
based on their CCSD value of the temperature-independent
contribution to the EFGB.>>® In 2003, a reinvestigation of the
Buckingham effect in gaseous N, over a range of temperatures
confirmed that the temperature-independent contribution to the
effect is not negligible, yielding a new experimental value, © = —
(4.97 £ 0.16) x 10 * Cm?>* in excellent agreement with the
ab initio value of Halkier et al. from 1998.%%

5.5. Linear Response Properties

Many of the microscopic properties obtained from linear
response theory are in the theory of electromagnetism defined
by multipole expansions, that is, from the perturbative expansion
of the real induced oscillating electric and magnetic multipole
moments>****%® (in the Einstein summation convention)

1 . 1
Uy = CupEp + aa;ﬁEﬁ + 3 Aa pr VpEs + - (616)

1 .
Gaﬂ = A% aﬁEy — ;A;, aﬁEV =+ Caﬁ, yévyEé + ...
(617)

1 . 1 .
my= EugBp + —EpBy + GpuBs— — Gl Byt .. (618)

In the following a few of the tensors entering the above
expansions are discussed, due to the fundamental role they play
in rationalizing a variety of physical and chemical phenomena.
Because of its relation with the magnetizability &, the rotational
g tensor will also be discussed below, even if it originates from a
different mechanism, namely, the interaction of the rotationally
induced magnetic moment with an external magnetic field.
5.5.1. Dipole Polarizabilities. Among the expansion coeffi-
cients introduced above, the electric dipole polarizability tensor

Aap(— 0, @) = — (e UpDw (619)

is probably the best-known second-order property, being the
leading term in the perturbative expansion of the (induced)
dipole moment 4, in the presence of a radiation field. The
polarizability is used to rationalize, at the microscopic level,
macroscopic observables such as the refractive index and the
dielectric constant of a medium. It plays an important role in
Raman spectroscopy and enters the temperature-dependent part
of various birefringence effects (vide infra). The dipole polariz-
ability gives information about molecular shape and charge
complementary to that provided by the dipole moment and is
important for characterization and elucidation of the molecular
structure of various substances. Like the dipole moment, the
dipole polarizability is a popular benchmark property for the
many linear response methods that have been presented over
the years. The numerous studies that have been carried out for
the dipole polarizability have clarified the performance of the
various computational approaches, see, for instance, refs 570 and
571. Moreover, high-accuracy ab initio dipole polarizabilities
have been used to benchmark the performance of approximate
Kohn—Sham exchange-correlation functionals.”

Owing to the importance of the polarizability itself through its
connection to the refractive index and of the many observables
derived from the polarizability, the literature on theoretical
studies of polarizabilities is vast and would require a review of
its own. For an up-to-date critical review of relevant literature of
theoretical calculations of polarizabilities, we refer the reader to
ref 573.

Apart from ground-state polarizabilities, excited-state polariz-
abilities can also be determined from response theory, for
instance, as second residues of the cubic response function of
the ground state, as done by Jonsson and co-workers at the
Hartree—Fock®”**”® and MCSCF'®" levels of theory. For CCSD
wave functions excited-state first-order properties were derived
by Koch and Jorgensen'** and by Stanton and Gauss,”’**”” who
also discussed the theory for static excited-state second-order
properties. Alternatively, Hittig et al.>”® presented an implemen-
tation based on an excited-state Lagrangian,””® which yields
excited-state properties equivalent to those identified from
ground-state double residues but with the artificial secular
divergent terms removed, thereby remaining numerically stable
in the limit of static external fields; the approach was applied to
compute the dipole polarizabilities of the S; states of s-tetrazine
and pyrimidine.

5.5.2. Magnetizabilities. The molecular magnetizability
describes the magnetic moment induced in a molecule by an
external magnetic field induction and how this induced mo-
ment may interact with the external field to yield an energy
correction. It is computed as the second derivative of the elec-
tronic energy with respect to the components of an external
magnetic field

d’E

=~

(620)
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In the response-theory formalism this expression is equivalent to

_ dZHBB LT _ gdia ara
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where the first contribution, known as the diamagnetic contribu-
tion, is the expectation value of the diamagnetic magnetizability
operator in eq 71, differentiated twice with respect to the magnetic
field. The second, paramagnetic contribution arises from the
interaction of the magnetic dipole operator with itself. In closed-
shell systems, due to quenching of the magnetic moment, see eq 66,
the magnetizability yields the first nonvanishing contribution to the
energy in the presence of a static magnetic field

AE(B) = —%BTEB (622)

For closed-shell molecular systems the diamagnetic contribu-
tion usually dominates the magnetizability, making the mol-
ecule diamagnetic. For some closed-shell molecules with low-
lying excited states it is the paramagnetic contribution that
dominates, making the molecule paramagnetic. However, as
discussed by Tellgren, Helgaker, and Soncini,*® all closed-shell
molecules become diamagnetic in sufficiently strong magnetic
fields.

As for other magnetic properties, calculation of the magne-
tizability is hampered by gauge-origin dependence. The most
successful solution to this problem is the use of London
orbitals.*®" When London orbitals are employed the paramagnetic
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contribution to the magnetizability is best defined as***
_ §LAO _ gdia(o)

which is equivalent to the definition in eq 621 in the limit of a
complete basis set.

In addition to ensuring gauge-origin independence, use of
London orbitals ensures fast basis-set convergence in calcula-
tions of magnetizabilities, as shown, for instance, in the study of
the magnetizability anisotropy of PF; in ref 582. Even in the
relatively large aug-cc-pVQZ basis the magnetizability anisotropy
computed without London orbitals has the wrong sign.

Magnetizabilities have been extensively studied at the Hartree—
Fock and MCSCEF levels of theory.”>**"**>*%An implementa-
tion of the gauge-origin-independent calculation of magnetiz-
abilities (and rotational g tensors) at the general coupled-cluster
level with London orbitals has been presented by Gauss et al.>*°
An implementation of the polarizable-continuum model (PCM)
in its integral-equation formulation for calculation of the magne-
tizabilities of solvated molecules at the Hartree—Fock, MCSCEF,
and (hybrid) Kohn—Sham levels of theory with London orbitals
was reported in ref 591. The theory of a hybrid quantum-
mechanics/molecular-mechanics (QM/MM) approach for gauge-
origin-independent calculations of the molecular magnetizability
using Hartree—Fock and Kohn—Sham theories was presented
in ref 592.

These studies have shown that the isotropic m%gnetizability is
not particularly sensitive to electron correlation*** (which con-
tributes less than 3% in most cases) nor to nonelectronic effects
such as zero-point vibrational corrections (with aromatic and
antiaromatic ring systems as exceptions)sgs'594 or medium
effects. By contrast, for the anisotropic magnetizability these
effects may be sizable.””"*** Despite the insensitivity to correla-
tion and other effects for the isotropic magnetizability, the
agreement between experimental and theoretical results is quite
poor. Since most of the experimental results are relative to
some reference compound it has been suggested that inaccurate
reference magnetizabilities in the experimental determination is
the reason for the disagreement and that, for small molecules at
least, calibration of measurements should be based on accurate
computed values.””

Recently, Lutnas et al.””" established an accurate benchmark
data set of magnetizabilities (and rotational g tensors) of 28
molecules using the CCSD and CCSD(T) models with extra-
polation techniques to obtain estimates of the basis-set-limit
quantities and used this set to examine the performance of
Kohn—Sham theory for a wide variety of exchange-correlation
functionals. None of the functionals examined proved competi-
tive with the CCSD or CCSD(T) methods. The coupled-cluster
results were also compared with the results of density-functional
calculations constrained to give the same density, and the
importance of current dependence in exchange-correlation func-
tionals was discussed in light of this comparison.

The theory for the frequency-dependent magnetizability re-
mains unresolved. A gauge-origin-independent theory for the
frequency-dependent magnetizability for exact states has been
proposed by Raab and de Lange.*”” Although origin indepen-
dent, the derivation of the frequency-dependent magnetizability
is based on ad hoc (but physically reasonable) conditions to be
fulfilled rather than on exact conditions. An apparently very
similar expression can be obtained by considering the constitu-
tive relations for the material constants,>® although we note that

57 19 (0) (623)

1 596
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the definition of the inverse permeability in this case is not
unique.®”” Independent of the formalism, for approximate cal-
culations also the frequency-dependent magnetizabilities require
the use of London atomic orbitals. Krykunov et al. started from
the expressions of Raab and de Lange®”” and calculated static and
dynamic linear magnetic responses in approximate time-depen-
dent DFT (TDDFT).*®

5.5.3. Rotational g Tensors. We already noted that molec-
ular rotation leads to an induced magnetic moment, as described
in section 5.2.3. The rotational g tensor arises from the interac-
tion of this rotationally induced magnetic moment with an
external magnetic field and is often referred to as the rotational
Zeeman effect.*® The rotational g tensor is closely related to the
molecular magnetizability in the nonrelativistic description of
magnetic interactions, " being governed by the paramagnetic
part of the magnetizability

g = —4mE " (Row)I' + g™ (624)

where we used the definition of the paramagnetic magnetizability
in eq 623 with the center of mass as gauge origin. The nuclear
contribution to the rotational g tensor is given by

gnuc

1 _
— Y Zy[Rp1; — RgREI!

(625)
2un

where the nuclear positions Rg are given relative to the center of
mass of the molecule.

Because of its close connection to the magnetizability the
rotational g tensor inherits many of the computational character-
istics of the magnetizability, including its gauge-origin depen-
dence and sensitivity to the choice of basis set. Gauss et al.**
demonstrated that, by introducing rotational London orbitals, a
computationally efficient scheme for calculation of rotational g
tensors is obtained, where basis-set and gauge-origin problems
are largely removed. An extreme case of the strong basis-set
dependence observed for the rotational g tensor was provided by
Ruud and Helgaker®®* for PFj, for which the g, values obtained
with and without rotational London AOs in the aug-cc-pVDZ
basis are of the same magnitude but of opposite sign. The results
obtained in this basis with London AOs are within 4% of the
basis-set limit for this molecule, in marked contrast to the non-
London results.

Unlike the magnetizability, rotational g tensors can be deter-
mined with high accuracy in molecular-beam®” and microwave
Zeeman experiments.”>® These experiments thus serve as an
important source of high-quality data against which accurate ab
initio methods can be benchmarked. Cybulski and Bishop presented
two early studies of correlated calculations of rotational g tensors of
diatomic molecules at the MP2 and the linearized-CCD levels of
theoryfm’602 Large (but non-London) basis sets were used to
ensure convergence and vibrational corrections were applied to get
results within the narrow experimental error bars.

Sauer and co-workers presented a number of studies of the rota-
tional g tensor of small molecules using the SOPPA method®*® ¢
and more recently the SOPPA(CCSD) method.®®® %% In many
of these studies special attention has been given to the vibrational
and temperature dependence of the rotational g tensors.*'
Enevoldsen et al.’’® presented calculations of the rotational
g tensor at the relativistic four-component Dirac—Coulomb
Hartree—Fock level of theory using the same definition of the
rotational g tensor at the relativistic and nonrelativistic levels of
theory. We note, however, that a relativistic treatment of the
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induced rotational magnetic moments has not yet been pre-
sented, and it is unclear whether the direct connection between
the magnetizability and the rotational g tensor also holds in a
relativistic framework.

With introduction of rotational London AOs*** larger mol-
ecules came within the reach of wave function-based calculations,
and highly accurate MCSCEF studies of rotational g tensors have
been presented by Ruud and co-workers,**#0*387,393,611,612
including studies of the rotational g tensor of electronically
excited states.”’**'* Gauss et al.*** implemented the calculation
of rotational g tensors at the coupled-cluster level of theory for
arbitrary excitation levels using the string-based approach of
Kéllay and Surjan.””® This implementation has been used to
provide high-level theoretical data for rotational g tensors (and
magnetizabilities) that have served as a benchmark set for
exploring the suitability of different exchange-correlation func-
tionals in calculations of magnetic properties.***®'*

An important application of rotational g tensors is for deter-
mination of molecular structures. It can be shown>***¢' that the
leading order electronic correction AB, to the rotational tensor
B, of a molecule is proportional to the rotational g tensor

e ¢B, (626)

mp

ABy

The importance of this correction varies from molecule to
molecule. For HF, N,, and HOF it is 1—2 orders of magnitude
smaller than the vibrational correction, whereas it is sizable and
nonnegligible for BH, CH", and SiC3.3'617 We refer to the recent
review by Puzzarini et al® for a detailed discussion of this
correction to rotational constants.

5.5.4. Optical Rotation Tensors. The trace of the mixed
magnetic—electric G’ tensor is proportional to the magnitude of
the specific optical rotation [¢], in (isotropic) chiral systems®'® >

Gos = Kmay gD [0], = Y G (627)

Calculations of the G’ tensor are routinely used to help in the
assignment of the absolute configuration of chiral species, see,
for instance, refs 619 and 621—623. Owing to the presence of
the magnetic dipole operator, determination of optical rotation
is hampered by the problem of gauge-origin dependence. Thus,
even if this tensor is easily accessible from the linear response
function by replacing one electric dipole operator in the electric
dipole polarizability with the magnetic dipole operator special
care must be exercised to remove the unphysical gauge-origin
dependence. For the variational Hartree —Fock, Kohn—Sham,
and MCSCEF models, translational invariance of the optical rotation
(ie., the trace of G’ but not of the individual tensor components)
can be achieved using London orbitals.**'°”***%*5 London
orbitals are therefore routinely employed for optical-rotation
calculations at the Hartree—Fock and Kohn—Sham levels of
theory. Alternatively, the velocity gauge can be used in such
calculations.®*¢

The first CCSD calculations of optical rotation were per-
formed by Ruud and Helgaker®” as part of a benchmark study of
Kohn—Sham exchange-correlation functionals. However, a fun-
damental problem remains concerning gauge-origin indepen-
dence of optical rotation for the truncated coupled-cluster
model and other models that do not satisfy the hypervirial
relation; for such models, use of London orbitals does not
ensure invariance of the optical rotation.">>%'¥%*¥ A5 a solution,

604

Pedersen et al. proposed to compute the optical rotation
instead from the velocity—gau%e expression, subtracting its
static limit from the G’ tensor.”>” Their approach avoids use
of London orbitals and allows use of the same velocity-gauge
formula for variational and nonvariational electronic-structure
models. Moreover, the basis-set convergence in their formula-
tion is similar to that of the conventional length-gauge method
with London orbitals.

Crawford and co-workers have been particularly active in the
area of determination of chiroptical properties usin: coup ed-
cluster (and Kohn—Sham) linear response methods.?*¥6'%630~63¢
In a study similar to that of Ruud et al,**” Crawford and Stephens
compared the performance of the CCSD and Becke-3-
parameter—Lee— Yang—Parr™*** (B3LYP) models (at the so-
dium D line) for 13 molecules, observing a good agreement (in
sign) except for norbornanone.*® At lower frequencies the B3LYP
and CCSD models often differ substantially owing to the more
accurate prediction of excitation energies and rotatory strengths by
the latter.

Russ and Crawford®®® presented a new scheme for construct-
ing localized correlation domains for reducing the scaling of
coupled-cluster response calculations for optical rotation. The
approach exploits an atom-based decomposition of the coupled-
perturbed Hartree—Fock response to both external electric and
magnetic fields to select the correlation domain of each occupied
orbital, as an extension of their earlier work on calculations of
dipole polarizabilities using local coupled-cluster approaches.”*®
Applying their domain-selection scheme to a series of chiral
molecules (including pseudolinear structures, cage-like struc-
tures, and aromatic rings) the authors found that the crossover
points between the canonical- and the local-correlation ap-
proaches are larger than for the conventional scheme of
Boughton—Pulay domains,**® in agreement with their earlier
analysis for dipole polarizabilities. Localization errors are reason-
ably small (a few percent) for pseudolinear structures with
domain sizes of 6—8 atoms, whereas cage-like molecules are
significantly more problematic, requiring natural domain sizes of
10 or more atoms to obtain the most reliable localization errors.

For the reliable prediction of optical rotation, inclusion of
vibrational, conformational, and solvent corrections is often
crucial %" 7% An extreme case is methyloxirane,*>%4 %!
where vibrational effects must be taken into account to reproduce
the experimental gas-phase optical rotation to within a few
degrees and for which the vibrational corrections may even lead
to a change in the sign of the optical rotation. In ref 633 Pedersen
et al. presented gas-phase optical rotations calculated from
coupled-cluster theory with zero-point vibrational corrections
calculated using Kohn—Sham theory, concluding that it is more
important to use high-level electronic-structure methods than to
include zero-point vibrational corrections. For the importance of
conformational flexibility, see, for example, refs 645, 652, and
653.

For optical rotation of nonisotropic (oriented) systems an
additional tensor quantity must be accounted for in calculations
of the optical rotation, namely, the dipole, quadrupole polariz-
ability tensor”

- <<4uw ®ﬂy>>w

obtained by replacing one dipole operator with the quadrupole
operator in the linear response function for the dipole polariz-
ability. The A, g, and G,g tensors are also important for other

(628)

Aa, py
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Table 4. Frequency Matching for Various NLO Processes
tensor frequency matching

ﬁaﬁy(wa;wﬁrwy) Wg =Wy =0
wp=w,w,=0
wp=—W, =0
yuﬁyrs(wa}wﬂrwyrwé) Wp =Wy =Wy
Wp=w,w, =0y =0

Wp =Wy =W, W5 =—0

wp=w,=w,ws=0

wp=0,0,=0,05=—0

NLO process acronym
second-harmonic generation SHG
electro-optic Pockels effect EOPE
optical rectification OR
third-harmonic generation THG
electro-optical Kerr effect dc-Kerr
intensity-dependent refractive index IDRI
degenerate four-wave mixing DFWM
electric-field induced SHG ESHG
dc-optical rectification dec-OR

optical effects, for instance, the Buckingham birefringencesm’654

and for ROA.>**

5.6. Nonlinear Response Properties

Interest in molecular nonlinear properties has increased
enormously in the last few decades, reflecting the growing
importance of nonlinear optics in several fields of advanced
technology.®**~%” One example is the design of new optical
materials and optical devices for data storage, since many non-
linear optical processes are mediated by the third-order nonlinear
susceptibility, which corresponds to the second electric dipole
hyperpolarizability. These properties have therefore always at-
tracted much attention from theoreticians as well as experimen-
talists. On the one hand, when (accurate) experimental results
are available they are often used as a test bed for bench-
marking new computational approaches and approximations.
On the other hand, given that their experimental determination is
often difficult, theoretical predictions, in particular, when made
with methods whose accuracy can be assessed with confidence,
often help in the calibration of experimental measurements,
sometimes even prompting the design of novel experimental
set-ups.

5.6.1. Hyperpolarizabilities and Nonlinear Optics. The
first and second dipole hyperpolarizabilities

ﬁaﬂy(wa; wg, (Uy) = <<ﬂa;/uﬁ; /uy»w/g, )

W, = —wg—w, (629)
Vapys(@a; 0p, @y, 05) = — Uity Uy UsDws, w,, wyp
Wy = —wg— W, — W (630)

are the best known examples of molecular properties obtained
from the quadratic and cubic response functions, respectively.
Depending on the choice of frequencies w; associated with the per-
turbations, a wealth of nonlinear optical (NLO) phenomena®®~ %’
may be addressed, see Table 4.

For NLO properties, highly accurate ab initio methods such as
coupled-cluster theory have been applied primarily to small
molecules, where there has been a significant interplay between
theory and experiment, see ref 74 for a detailed review. This
interplay has been essential for illuminating the role of various
mechanisms in NLO processes and for identification and design
of molecules, chromophores, and functional groups with specific
properties. Indeed, as for the polarizability, the literature on
theoretical (and experimental) studies of hyperpolarizabilities
is vast, with several dedicated collective contributions. We refer
the interested reader to the book edited by Papadopoulos,

Leszczynski, and Sadlej'® for contributions covering various
aspects related to NLO properties: current advances in the
computation of the NLO properties of molecules, crystalline
solids, and nanoparticles, methods employed to compute the
properties of both microscopic and macroscopic forms of matter,
studies of NLO properties of organometallic compounds, rotax-
anes, glasses, Langmuir—Blodget films, gold, and silver nanopar-
ticles, and more. Strategies for developing new NLO materials
are discussed in connection with the hyper-Rayleigh scattering
technique.

We here note that the four-component Hartree—Fock quad-
ratic-response code of Norman and Jensen>** has been applied to
compute the second-harmonic generation (SHG) hyperpolariz-
abilities of CsAg and CsAu. Kussman and Ochsenfeld extended
their linear-scaling Hartree—Fock and Kohn—Sham code to
calculation of first hyperpolarizabilities for molecules with a
nonvanishing band gap, presenting calculations of the first
hyperpolarizability of a-p-glucose polymers with up to 48
monomer units."

5.6.2. Mixed Hyperpolarizabilities and Birefringences.
Response theory has played an important role in the study of
birefringences, that is, the optical anisotropy of the refractive
index An for two different directions, often induced when the
probing light (either polarized or unpolarized) passes through
the sample in the presence of additional fields in specific
geometrical setups with respect to the direction of propagation
of the probing beam. Interest in these birefringences (and their
absorptive counterparts, the dichroisms) has steadily increased
during the last two decades, reflecting the steady progress in
optics and detection techniques from the experimental side and
rapid advances of methods and computational power from the
theoretical side.”*® Among the birefringences studied computa-
tionally in recent years are the linear birefringences induced by an
externally a(%plied magnetic induction field (Cotton—Mouton
effect),5>% 062 by an electric field gradient (the Buckingham
effect or EFGB),*** and by mixed electric and magnetic induc-
tion fields (Jones and magneto-electric birefringences),** axial
magnetochiral birefringence,séé"665 and circular birefringence
(Faraday rotation).®®¢ %%

At a fixed pressure the general form of an optical anisotropy is**

1
The temperature-dependent contribution A, arises from different
mechanisms of molecular reorientation and involves the interaction
of the fields with permanent electric or magnetic moments. The
temperature-independent contribution A, arises from electronic
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reorganization and involves different higher order tensors
(hyperpolarizabilities and hypermagnetizabilities). Terms with
more than a linear inverse temperature dependence are possible
and usually connected to the presence of permanent magnetic
dipole moments or higher order processes involving more
complicated interactions between fields and multipoles. The
temperature-independent terms are the only nonzero terms for
systems of spherical symmetry.

At the molecular level the terms Ag, Ay, ... contain isotropic
averages of molecular, both static and frequency-dependent,
tensor properties such as permanent multipole moments, polar-
izabilities, and hyperpolarizabilities. In particular, we find for the
Faraday rotatxon ¢, usually discussed in terms of the Verdet
constant V(w)®*’

"(m 1 /
0 = V@B = By (), + i) (632)
L= g gy my M, o (633)
G = — K 5D (634)
544,555,557,673

for the Buckingham effect
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for the Cotton—Mouton effect®> 562
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and for the magnetoelectric Jones effect®®
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Accurate theoretical investigations of birefringences have proven
important in several instances, both in relation to the interplay
between experiment and theory and in clarification of the
fundamental theories of the effects. For instance, calculations
of the Cotton—Mouton effect may be used for calibration of the
experiment,”*”*"* whose accuracy needs to be assessed with
great precision if one ho opes to be able to detect the magnetic
birefringence of vacuum.®’*~’® State-of-the-art computations of
the Buckingham birefringence have been used to revise the
experimentally derived quadrupole moments of various mol-
ecules from single-temperature measurements and, in particular,
identify inconsistencies in the experimentally derived quadrupole
moment of N,.*** Calculations on CO>”*% and other
species helped settle a discrepancy between the Buckingham—
Longuet-Higgins®** and the Imrie—Raab®”’ theories of the
linear birefringence induced in a gas of dipolar molecules by an
electric-field gradient in favor of the former theory. A later
revision brought the theories into agreement, confirming the
validity of the orlgmal result obtained by Buckingham and
Longuet-Higgins. o8t

Among the recent methodological advances that affect the
ability to compute birefringences is the gauge-origin-indepen-
dent formulation and implementation of the Verdet constant at
the CCSD level of theory using London orbitals,**® where the
Verdet constant was reformulated as a magnetic-field derivative
of the dipole polarizability. A similar formulation was used in the
AO-based Hartree—Fock (and Kohn—Sham) implementation
by Kjergaard et al.%’ A quasi- energy formulation of Hartree—
Fock and Kohn—Sham response theories enabled the tempera—
ture-independent term of the Buckingham eﬁect * and the
Cotton—Mouton effect at nonzero frequenc1es to be deter-
mined in a gauge-origin-independent manner. A relativistic
extension of the latter formulation has recently been used to
investigate the importance of relat1v1ty for the Buckingham
effect of carbon dichalcogenides.*®

5.6.3. Dispersion Coefficients. The dispersion (i.e., fre-
quency dependence) of response functions in the nonabsorptive
region is often accounted for by an expansion in powers of the
frequency. For instance, the electric dipole polarizability is
expanded according to the Cauchy series

= i w*S
k=0

where the dispersion coefficients S(—2k — 2) are known as
Cauchy moments

=Y

nyéO

—2k—2) (647)

f afs

kl on —

200,(0ut, [m)n|gl0)  (648)

with S(—2) = a(0). Similar expansions can be introduced for the
hyperpolarizabilities.

Hittig and co-workers®®* %% derived analytic expressions
for the dispersion coefficients of linear, quadratic, and cubic
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response functions using the time-averaged quasi-energy Lagran-
gian technique within coupled-cluster response theory for the
CCS, CC2, and CCSD models, demonstrating that the disper-
sion coefficients are sensitive to basis-set effects and correla-
tion treatment in a manner similar to that of static (hyper)—
polarizabilities. The analytic dispersion coefficients for frequency-
dependent properties are calculated from the derivatives of the
properties with respect to their frequency arguments using Padé
approximants to improve the results. A derivation and imple-
mentation of the analytic expressions for the second-order dis-
persion coefficients of second-, third-, and fourth-order properties
in FCI linear, quadratic, and cubic response theory have been
presented by Larsen et al.®*

5.7. Interaction Properties

Many molecular properties are related to intermolecular
interactions and can be evaluated using the general techniques
of response theory. In the following we consider first evaluation
of dispersion-interaction coeflicients and next evaluation of
interaction-induced properties of van der Waals complexes.

5.7.1. Weak Interactions and Long-Range Dispersion-
Interaction Coefficients. At large separations the forces
between two neutral systems are dispersive, arising from a weak
correlation of the motion of the electrons in the two systems. The
dispersion energy, the dominant contribution to the interaction
energy at large intermolecular distances, can be computed from
response functions. Denoting two closed-shell atoms by A and B
the dispersion energy has the form

Y 0408 [ VAR |nams)|*

n m

A B
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which may be expanded in terms of dispersion coefficients as
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According to the Casimir—Polder formula,®®” the C, coefficient,
for which accurate experimental results are available, can be
computed from the integral

CP = %/:oaA( —iw;iw)a® ( —iw;iw)do (651)
which involves the dipole polarizability (linear response
function) at imaginary frequencies (iw). Higher order coeffi-
cients are similarly obtained from expressions involving higher
order multipole polarizabilities.

Direct evaluation of the polarizability at imaginary frequencies
in eq 651 by regular response theory may be cumbersome since it
involves complex arithmetics, standard nonrelativistic quantum-
chemical codes being based on real arithmetics. One typical
solution is to exploit the expansion formula for the polarizability
in terms of the real Cauchy moments in eq 647, which has a
radius of convergence in the complex plane equal to the lowest
dipole excitation frequency. Evaluation of the Cg dispersion
coefficients in MCSCEF linear response theor;r was presented
by Fowler, Jorgensen, and Olsen in 1990.*” An alternative
strategy, proposed by Norman and co-workers,* is based on
the complex polarization propagator, where the dynamical
polarizabilities at imaginary frequencies are obtained directly
from the complex polarization propagator and the Cg coefficients
are determined from the Casimir—Polder relation, see also refs

607

688 and 689 for Hartree—Fock and Kohn—Sham applications to
Cgo, sodium clusters, and n-alkanes.

In ref 231 Paidarova and Sauer used the SOPPA, SOPPA-
(CCSD), CC2, and CCSD models to determine the dipole
oscillator strength sum rules of the hydrogen halides HX (with X
=F, Cl, Br, and I) and the Cg4 dispersion coefficient for all pairs of
interacting HX molecules by numerical integration of the
Casimir—Polder formula. The dependence of the polarizabilities,
their dispersion, and Cg coeflicients on the level of correlation
and the dependence of the Cg coefficients on the two intramo-
lecular bond lengths were studied.

5.7.2. Interaction-Induced Properties. Coupled-cluster
(response) methods have been extensively employed to deter-
mine intermolecular potential energies, interaction-induced first-
order properties, and polarizability and hyperpolarizability sur-
faces of van der Waals complexes (dimers).®°~** Indeed, van
der Waals dimers have received much attention during the last
two decades, both experimentally and theoretically. One of the
most important research objectives of the many studies that have
appeared is to obtain a better understanding of the nature of pair
interactions. Interaction-induced polarizabilities are an impor-
tant source of information on intermolecular forces; therefore,
much work has been carried out over recent years aimed at their
accurate experimental determination.%”*~7%

From a theoretical point of view, evaluation of interaction-
induced properties in van der Waals complexes is difficult, given
that dispersion places substantial demands on the level of
electron-correlation treatment and on the choice of basis
set S6VE909ZTO1=703 nteraction-induced properties are usually
computed according to
where Pap(Ssp|R) is the property of the A—B dimer (at
geometry R) and PA(Sap|R) and Py(Ssg|R) are the properties
of monomers A and B at the same geometry. All quantities are
calculated in the dimer basis Syp to reduce basis-set super-
position errors.

A typical study of interaction-induced properties is determina-
tion of the effect of many-body collisions or, in macroscopic
terms, of the density on some property P such as the refractive
index or the EFGB of a real gas. To this end, the property is
expressed in terms of virial expansions’***®

P =Ap + Bpp + Cpp* + ... (653)
where p is the density and Ap, Bp, Cp, ..., are the first, second,
third, ... virial coefficients. Usually only the first and second virial
coeflicients are considered; for the latter, a semiclassical expres-
sion of the form”%®7%

Bp o< 47TN? / AP(Rpp)R2ze ™V R0)/KT gR, (654)

is often adopted,m@707 where R,gp is the distance from A to B,
V(Rap) is the interaction potential, and AP(R,3) the relevant
interaction-induced property.

During the past decade, several coupled-cluster studies have
been performed of the second dielectric and second refractivity
virial coeflicients, the Kerr and hyperpolarizability second virial
coefficients, as well as the second virial coefficients for the
Cotton—Mouton and Buckingham birefringences in various
systems, see, for example, refs 661, 690, 691, 694, and 708.
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5.8. Excited-State Energies, Properties, and Transition
Properties

An attractive feature of response theory is the fact that excited-
state molecular properties, for example, excitation energies from
the ground state and between excited states, (multiphoton)
transition strengths, excited-state first-order properties, and
excited-state structure parameters, may be calculated without
the explicit optimization of the excited-state wave function.
Vertical excitation energies are obtained as poles of the linear
response function by solving a generalized eigenvalue problem,
one-photon transition strengths such as UV oscillator strengths
and ECD rotational strengths are obtained from the residues of
the linear response function, while multiphoton strengths and
excited-state (hyper)polarizabilities are accessible from residues
of higher order response functions. Excited-state polarizabilities
were briefly discussed in section 5.5.1; in the following, some
more excited-state properties (including transition properties)
are discussed.

5.8.1. Excitation Energies and One-Photon Transition
Strengths. Implementations of response theory for (vertical)
excitation energies have been reported at many levels of wave
function theory: Hartree—Fock theory or the random-phase
approximation (RPA), Cl-singles (CIS) theory or the Tamm—
Dancoff approximation (TDA), MCSCF theory, coupled-cluster
theory (CC2,'*' CCSD,'™” CC3,'**'** and CCSDR(3)'®),
EOM-CC theorgr,ué’lgl’lsz’203 propagator theories such as ADC-
(2), ADC(3),2>*37% SOPPA and SOPPA(CCSD),**® second-
order RPA (RPA(D)) theory,710 and CIS(D) theory. The corre-
sponding dipole transition strengths can be obtained from the
residues of the linear response function (the dipole polarizability),
available for most of these methods. The choice of the electronic-
structure method for excitation energies and transition strengths
depends on the problem at hand and the preferences of the user; we
do not discuss these aspects here, referring instead to recent
benchmark studies.*>”*'~7'* We also refer to refs 714 and 715
for a discussion of the relation between the ADC approach,
coupled-cluster linear response theory, EOM-CC theory, multi-
reference coupled-cluster MRCC schemes, and the SAC-CI
approach.

As an illustration we mention here a recent coupled-cluster
study of the electronic gas-phase spectrum of glycine, alanine,
related amines, and carboxylic acids by Osted et al.”'® The
systems were chosen in order to investigate the origin of the
common electronic excitations in amino acids, paying special
attention to the valence excitation from the nonbonding lone pair
on the CO oxygen atom to the antibonding 7 orbital (n(O) —
7*(CO)) and to the first Rydberg excitation from the nonbond-
ing lone pair on the nitrogen atom (n(N) — 3s). Excellent
agreement with all reliable experimental values was achieved.
Predictions for vertical excitation energies were given for all
molecules, including glycine and alanine, for which no gas-phase
experimental results are available. Finally, calculations on proto-
nated amino acids were presented, showing an isolation of the
n(O) — * (CO) transition from higher lying states by as much
as 1.9 eV for alanine. As another example of excitation energy
studies, vertical excitation energies and transition dipole mo-
ments between excited electronic states were in ref 717 calculated
for the trans-polyene series C4Hg to Cy,H14 to study formation
of excited-state absorption spectra of these species, applying
quadratic response theory in conjunction with Hartree—Fock
and coupled-cluster theories. As a final example, Astrand et al.
performed an ab initio SOPPA investigation of the electronic

608

spectra of azobenzene dyes, suggesting that the information
obtained about spectra in this nonempirical manner may be
useful for identifying promisin% diazo components for develop-
ment of data-storage devices.”'

5.8.2. Electronic Circular Dichroism. Residues of the optical
rotation tensor G’ give access to electronic circular dichroism
(ECD). The key molecular quantity is in this case the ECD
rotational strength, which in the length gauge is given by

Roo = (0[]} (nfm]0) (655)
ECD studies based on wave function methods are still somewhat
limited, the field being dominated by TDDFT. The status of the ab
initio determination of ECD (and optical rotation) was reviewed
a few years ago by Pecul and Ruud,®*® and by Crawford
and coworkers.® %%

The use of London orbitals for gauge-origin-independent
ECD calculations was proposed by Bak et al. in 1995 for the
variational Hartree—Fock and MCSCF methods, later extended to
TDDFT by Pecul et al.”* Alternatively, as for optical rotation, origin
invariance of the ECD rotational strengths may be achieved using a
velocity-gauge representation for the electric-dipole operator

Ry =

Re(0|p|m)(n|m|0) (656)

Wyo

Several modern ECD implementations utilize the velocity-gauge
formulation, which, for variational models, becomes equivalent
to its length-gauge counterpart in the complete-basis-set limit.

The lack of gauge invariance of the truncated coupled-cluster
model affects calculation of ECD in the same manner as that of
optical rotation discussed earlier.”*° In particular, London orbi-
tals do not suffice to ensure invariance. Pedersen and Koch
proposed a reformulation of coupled-cluster theory that would
allow gauge-invariant results to be obtained in coupled-cluster
theory,”*""** although this proposal has not yet been implemen-
ted. The work of Pedersen et al. in ref 720 is the first ECD
implementation and calculation at the CCSD level of theory. The
authors considered gauge and origin invariance in the scalar
rotational strength and rotational-strength tensor, the latter
which provides the ECD intensity of oriented samples. Subse-
quently, EOM-CC (and DFT) studies of ECD have been carried
out by Crawford and co-workers.”**”>*”>* Moreover, Diedrich
and Grimme’*® systematically investigated the ability of different
quantum-chemical methods, TDDFT, CC2, MRMP2, and
DFT/MRC], to predict experimental ECD on a test suite of
seven molecules containing a range of difficult chromophores
and to three model systems for which accurate ab initio MRCI
reference data were used for comparison.

5.8.3. Multiphoton Absorption and Dichroism. Two-
photon absorption (TPA) and two-photon circular dichroism
(TPCD)”* are further examples of optical phenomena acces-
sible by response theory. We mention here a coupled-cluster
study of formaldehyde, diacetylene, and water by Paterson
et al,”*” in which the effect of triple excitations on TPA cross
sections was determined for the first time. This study presented a
detailed comparison of the coupled-cluster results with those
obtained using Kohn—Sham theory with a variety of exchange-
correlation functionals. Best results were obtained with the
Coulomb attenuating method B3LYP (CAM-B3LYP)
functional,”*® although it was noted that care must be exercised
with diffuse Rydberg states. Nielsen et al.”* presented a detailed
investigation of TPA cross sections of water, employing different
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series of correlation-consistent basis sets in combination with
several coupled-cluster, CI, and Kohn—Sham models, finding it
difficult to reach convergence. TPCD has so far only been
investigated at the Hartree—Fock and TDDFT levels of theory,
see, for example, refs 730—733. Calculation of three-photon
absorption cross-sessions using response theory have been
reported at the Hartree—Fock level in refs 734—736.

On the basis of an analysis of the first residues of coupled-
cluster response functions, Hittig et al.”*” devised variational
functionals from which the transition moments for n-photon
excitations can be calculated as nth-order derivatives. Combining
these functionals with variational perturbation theory, these
authors developed a new approach for derivation of multiphoton
transition moments, allowing them to utilize the full strength of
variational perturbation theory directly rather than through
residues. Coupled-cluster multiphoton transition moments de-
rived by this approach were shown to be formally equivalent to
those identified from the first residues of the ground-state
response functions. The strength of the new approach was
demonstrated by derivation of three- and four-photon transition
moments.”>’

A similar approach, based on an analysis of the second residues
of the coupled-cluster ground-state response functions, yielded
general expressions for multiphoton transition moments be-
tween two excited states and for excited-state response functions
in ref 579. The second residues were rewritten as derivatives of
variational functionals, and computational efficient expressions
were obtained in accordance with the 2n + 1 and 2# + 2 rules. For
the excited-state response functions, secular divergencies were
removed by reformulating the expressions identified from the
second residues of the ground-state response functions as
derivatives of an excited-state quasi-energy Lagrangian. Explicit
expressions were given for coupled-cluster one-, two-, and three-
photon transition moments between two excited states and for
excited-state first-order properties and linear and quadratic
response functions.

5.8.4. Magnetic Circular Dichroism. The single and double
residues of the mixed dipole—dipole—magnetic-dipole quadratic
response function have been shown to correspond to, respectively,
the 08 and . terms of magnetic circular dichorism (MCD), the
absorgtion counterpart of Faraday rotation discussed in section
5627997 The _{ and ¢4 terms can also be formulated as
derivatives with respect to the strength of an external magnetic field
of, respectively, the excitation energy”®”* and the dipole oscillator
strength,éég’669 that is, as derivatives of the pole and residues of the
magnetic-field-dependent dipole polarizability. In this way, the
field-dependent contributions from London orbitals are more
easily incorporated and gauge-origin independence ensured, even
for the nonvariational coupled-cluster method.****® Most MCD
methodological developments (in a response-function theory
context) have taken place within TDDFT, except for the original
MCSCEF implementation of the ¢4 term’>® and a CCSD London-
orbital implementation,”®*”*’ both by Coriani and co-workers.

5.8.5. Excited-State Molecular Gradients and First-Or-
der Properties. By combining analytic gradient techniques with
response theory, excited-state molecular gradients can be calcu-
lated and hence excited-state potential-energy surfaces efficiently
explored without explicitly calculating the excited-state wave
function.

Analytic derivative techniques for the gradient and other
properties of excited-state energy surfaces began to appear in
the early 1990s, with the CIS implementation of Foresman et al.
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in 1992.”*! Formulas for the EOM-CCSD excited-state gradient
were presented by Stanton in 19937** and subsequently imple-
mented by Stanton and Gauss,”’®>”” whereas an alternative
derivation and implementation were presented by Szalay.”*’
An extension to general coupled-cluster and CI models usin
string-based methods was given by Kéllay and Gauss in 2004.”*
Spin-flip EOM-CCSD gradients were presented by Levchenko
et al.”* and molecular gradients for the similarity-transformed
EOM-CC method by Gwaltney et al.”*® The automated algebraic
derivation of excited-state gradients for EOM-CC and similarity-
transformed EOM-CC techniques was also discussed by
Wiadyslawski and Noojien in 2005.”*

The CIS model has for a long time been considered the
standard a};})roach for excited-state optimizations of large
systems.”*®”* However, Kohn and Hittig'’* presented in
2003 a derivation and implementation of excited-state molecular
gradients at the CC2 level of theory, employing the resolution of
the identity approximation for the electron repulsion integrals.
Adiabatic excitation energies, excited-state-structure constants,
and vibrational frequencies could be calculated. Generalizations
of the SCS and SOS modifications of MP2 perturbation theory to
the CC2 model (termed SCS-CC2 and SOS-CC2) were dis-
cussed, and a preliminary implementation was presented in ref
299. In ref 750 a quartic-scaling algorithm for evaluating the
analytical gradient of quasidegenerate SOS second-order perturba-
tion corrections to the CIS energy method (SOS-CIS(Dy)) was
presented, where the low-order scaling was attained using the
resolution-of-the-identity approximation and the Laplace trans-
form. The efliciency of the method was demonstrated by calculat-
ing the excited-state gradients of molecules of varying sizes. An
implementation of the analytic excited-state gradients for the
ADC(2) and CIS(D,,) models was presented in 2005 by Héittig.238
Owing to the non-Hermiticity of its Jacobian, the CC2 method
appears to give a physically incorrect description of conical inter-
sections between states of the same symmetry. This problem does
not arise in ADC(2) theory, where a Hermitian secular matrix is
used. An AO-based Lagrangian Hartree— Fock (and Kohn—Sham)
implementation was recently presented by Coriani et al.***

Regarding excited-state first-order properties other than mo-
lecular gradients, Devarajan et al.”" reported an investigation of
the dipole moments of low-lying singlet and triplet excited states
of ozone and the ozone cation radical, obtained using the Fock-
space multireference-coupled-cluster (FS-MRCC) analytical lin-
ear response approach. A benchmark study of the accuracy of
excited-state dipole moments of furan and pyrrole calculated in
coupled-cluster theory has been presented b3y King”>> and
compared with TDDFT results by Burcl et al.”®

Kats et al.*' presented a method for calculating transition
strengths and first-order properties of singlet ground and excited
states of extended molecular systems based on the CC2 model,
with local approximations in the doubles part of the wave
function and density fitting for the electron repulsion integrals.
The Boughton—Pulay domains®*® for local correlation were
found to be inadequate for excited-state properties and a new
scheme proposed.

Tellgren et al.”** reported an implementation of the second-
order residue of the quadratic response function in the four-
component Hartree—Fock approximation, from which first-
order properties of electronically excited states can be obtained.
The scheme was used to compute the excited-state electric dipole
moments of the valence excited states in CsAg and CsAu, for
which nonscalar relativistic effects were found to be substantial.
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5.8.6. Phosphorescence. Whereas transition moments be-
tween singlet and triplet states are obtained directly from the
residue of the linear response function when relativistic two- or
four-component wave functions are used,**>”>* we must in the
nonrelativistic case consider the spin—orbit-perturbed ground-
and excited-state wave functions to make these dipole transitions
allowed

oy = — y o Pr@YCn©|H,, | 0©) (657)
') = Ty — o) 'OX OOy (658)

Including these first-order corrections in the expression for the
transition moments we find that the first-order contribution to
the dipole transition moment between singlet and triplet states
may be written as a residue of a quadratic response function”®”*°
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lim (659)
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where V' is an arbitrary triplet operator (that determines the
excitation vector) and @ matches the singlet—triplet excitation
energy. The phosphorescent radiative lifetime 7; of the kth
component of |3f> can be obtained from the relation

1

- (660)
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and depends not only on the transition moment but also on the
excitation energy. The transition moment may vary for different
polarizations of the light. The average phosphorescent lifetime is
dominated by the shortest lifetime, corresponding to the polar-
ization with the largest partial transition rate. Implementations of
single residues of the triplet quadratic response function have
been presented by Vahtras et al.”*® for MCSCF theory and
Christiansen and Gauss for coupled-cluster theory.”*” A number
of studies of phosphorescent lifetimes, including heavy-atom
effects on these lifetimes, have been presented by Minaev and co-
workers using MCSCF wave functions,>' 311725758

5.8.7. Spin—Orbit Coupling Constants. Spin—orbit cou-
pling constants describe the coupling between singlet and triplet
states and correspond to the residue of the triplet linear response
function”’

li_r,n ((,U - a)f)«Hso; wa»w (661)
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Although the spin—orbit operator in eq 67 has both one- and
two-electron parts, the one-electron mean-field”®® or scaled”®'
spin—orbit operators are commonly used; the differences in
these a;)égroximate spin—orbit operators have been analyzed by
Neese.””” Most calculations of spin—orbit coupling constants
involve the variational CI of?timization of the relevant states
using multireference theory.” =767 However, spin—orbit matrix
elements have also been calculated using MCSCF and coupled-
cluster linear response theory.”*>”%® Within a relativistic frame-
work, the spin—orbit interaction arises naturally and is included
in the optimization of the wave function. Fedorov and Gordon
have given an extensive overview of the different methods used
for calculating spin—orbit coupling constants up to 2003.” An
interesting recent development is the extension of the Columbus
spin—orbit graphical unitarzf group approach (GUGA) for multi-
reference wave functions®*>”° to a hybrid MRCI/DFT level””!
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in the spirit of the DFT/MRCI approach of Grimme and
Waletzke.””>

The spin—orbit coupling is the main intramolecular interac-
tion mechanism responsible for intersystem crossings. Moreover,
spin—orbit effects often differ substantially in their behavior from
the scalar relativistic effects, leading, for instance, to an interest-
ing correlation between spin—orbit effects on nuclear shielding
constants and indirect spin—spin coupling constants for mol-
ecules with heavy nuclei.*’ By enabling singlet—triplet transi-
tions it provides a very different pole structure for relativistic
linear response functions than for nonrelativistic ones.”®* It is
therefore important to consider spin—orbit effects separately
from other relativistic effects, even in four-component calcula-
tions. A scheme for removing spin—orbit effects in relativistic
calculations has been proposed by Dyall’””® and applied at the
four-component level of theory by Visscher and Saue.””* More
recently, Cheng and Gauss applied a spin-free Dirac—Coulomb
Hamiltonian to calculate the electric properties at the coupled-
cluster level of theory.”*

5.8.8. Finite Lifetimes. As discussed in section 3.7, an
important methodological development within response theory
in the past decade is the implementation of damped response
approaches. Even though the idea of introducing a phenomen-
ological damping factor in the perturbative expressions for the
(hyper)polarizability to account for the finite lifetime of the
excited states is not new,”"””* its most successful formulation and
implementation in the context of response theory is probably the
complex polarization propagator method presented about 10
years ago by Norman et al. for the linear response function at the
Hartree—Fock and MCSCF levels of theory.” Extension of the
method to the quadratic response function along with a more
rigorous justification of the methodology appeared a few years
later.*” In the same year a damped response approach was
presented by Jensen et al.”' within DFT. A different but
equivalent formulation of the complex polarization propagator
based on the quasi-energy formulation, called damped response
theory, was recently proposed by Kristensen et al.”’ Damped
response formulations are now available at the Hartree—Fock,
MCSCEF, and Kohn—Sham levels of theory. Similar approaches
have also been proposed in the context of vibrational CI,””%”””
based on a Lanczos method, to evaluate the pure vibrational
contributions to the polarizabilities and first hyperpolarizabilities
of molecules and to compute infrared spectra from the imaginary
part of the damped vibrational linear response function.

The phenomenological introduction of empirical lifetimes for
the excited states in the response functions is useful for several
reasons. It allows us, for instance, to study properties and spectra
in resonant regions without the need to compute individual
excitation energies and transition strengths and the subsequent
convolution with line-shape functions. Thus, absorption, ECD,
and MCD are computed directly from the imaginary or real part
of the relevant response functions over the entire frequency
range, including the highly energetic region of X-ray
absorption.**+?195778 7780 Applications, mainly at the TDDFT
level, include, for instance, the first calculations of the complete
optical-rotation dispersion curves using origin-independent DFT by
Norman et al.** Another application, already mentioned in section
5.7.1, is the direct evaluation of the polarization propagator (linear
response function) on the whole imaginary frequency axis, avoiding
the expansion of the polarizability in a series of the Cauchy
moments. In this manner, Casimir—Polder interaction potentials
(Cs coefficients) can be determined %578
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6. PURE VIBRATIONAL CORRECTIONS

In this section we consider an additional, nonelectronic contribu-
tion to molecular properties that, in principle, appears for any
response function, namely, pure vibrational contributions, arising
from excitations within the vibrational domain of the electronic
ground state. The corresponding pure rotational contributions are
usually assumed to be small and neglected.”*” In the sum-over-states
expressions for the response functions in section 3.4 the summations
are, in principle, over the vibronic rather than electronic states of the
molecule. For the polarizability, for example, these summations may
be written in the form (following the notation in ref 783)
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where k and K denote electronic and vibrational states, respectively. In
the Born—Oppenheimer approximation”**”** the vibronic wave
function is written as a product of a nuclear wave function Cg and
an electronic wave function 1§ that depends parametrically on the
nuclear positions

W, k(R r) = CRR)y(r, R) (663)

Separating the sum in eq 662 into a sum over the vibrational manifold
of the electronic ground state and a sum over all the electronic excited
states we obtain the expression
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where the first term is the pure vibrational contribution to the
polarizability whereas the second term corresponds to the zero-point
vibrationally averaged electronic polarizability, simplified by appli-
cation of the closure approximation for the vibrations. In Table 5
we collected the pure vibrational contributions to polarizabilities
and hyperpolarizabilities for exact nuclear—electronic wave func-
tions in the Born—Oppenheimer approximation.”**”%¢

For diatomic molecules we may evaluate the pure vibrational
corrections in Table S using the vibrational sum-over-states
expressions.””>”®”~7%% The literature on pure vibrational con-
tributions to diatomic molecules has been surveyed by Bishop
and Norman.”®® For polyatomic molecules a number of approx-
imate schemes have been introduced, the most popular being the
perturbation-theory approach of Bishop and Kirtman,®*”*° whose
accuracy was investigated for diatomic molecules by Bishop and
Norman” and for polyatomic molecules by Torrent-Sucarrat
et al.””" Bishop et al. introduced an alternative scheme, where
the molecular 7%eometry relaxes in the presence of applied static
electric fields;”” subsequently, Luis et al. proposed a scheme
involving electric-field-relaxed coordinates, significantly reducing
the computational cost””> An advantage of the latter two ap-
proaches is the implicit inclusion of the leading order anharmonic
corrections, whose inclusion otherwise requires expensive calcula-
tion of cubic force constants (for mechanical anharmonicity) or
geometric second derivatives of the (hyper)polarizabilities.

A very different approach has been taken by Christiansen
et al,”’%”°* who calculated the pure vibrational contributions
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from vibrational linear response theory using the vibrational CI
method.””>”® Unlike for the perturbation-based methods, the
potential-energy and property surfaces are calculated on a grid.
Their approach has been extended to the c;uadratic response
theory level to recover anharmonic effects.””” An interestin§
analysis of the vibrational pole structure has been published.””

The theory and calculation of pure vibrational corrections have
been reviewed several times.”*>7*®”%° In this review, with its focus on
molecular electronic response theory, we restrict ourselves to the
perturbative treatment of pure vibrational contributions. Represent-
ing the zero-order vibrational wave function as a product of har-
monic-oscillator wave functions, one for each vibrational normal
mode, the molecular properties are expanded around the equilibrium
geometry in the nuclear displacements. Evaluation of the pure vibra-
tional corrections thus requires calculation of geometric derivatives of
the (hyper)polarizabilities. In Table 6, we list the expressions for the
contributions to the pure vibrational (hyper)polarizabilities.”**

Although a Hartree—Fock implementation of analytic deriva-
tives for cubic and quartic force fields****** and dipole moment
and polarizability derivatives®** was presented by Handy and co-
workers in the early 1990s, it is only with the recent Hartree—
Fock implementation of Champagne and co-workers® 800804
that analytic calculations of pure vibrational contributions have
appeared; recently, an AO-based Kohn—Sham implementation was
presented by Thorvaldsen et al.”” and later extended to two- and
four-component  relativistic theory.'” In post-Hartree—Fock
theory, calculations of pure vibrational contributions involves taking
finite differences along normal coordinates of analytically calculated
hyperpolarizabilities. Following an early correlated study by Hattig
and Jorgensen,** Norman et al. considered the combined effect of
electron correlation and solvation on the electronic and vibrational
hyperpolarizabilities in methanol.**® Using CCSD(T) theory, Sadlej
and Papadopoulos examined the effects of electron correlation
and relativity on electronic and vibrational hygerpolarizabi]ities,
demonstrating that these are not always additive.*”” %

Pure vibrational contributions to nonlinear properties invol-
ving magnetic fields are typically less important than their electric
analogues, often vanishing by symmetry as illustrated in eq 66.
Indeed, only properties with a quadratic dependence on the
magnetic field exhibit pure vibrational corrections, such as the
hypermagnetizability that determines the Cotton—Mouton
effect.*'**!! Correlated calculations of pure vibrational contribu-
tions to hypermagnetizabilities have been presented.*'* Rizzo and
Cappelli also recently presented CCSD investigations of the pure
vibrational contributions to EFGB and Jones birefringence.®'

Whereas pure vibrational contributions are negligible for
processes at optical frequencies, they may be significant and
even dominate for static hyperpolarizabilities, see, for example,
ref 814. Considering the known difficulties of Kohn—Sham
theory in treating electric properties of extended systems®'®
and the importance of electron correlation for electronic and
vibrational hyperpolarizabilities,*'®*'” the lack of analytic corre-
lated wave function-based methods for calculating geometrical
derivatives of electric properties beyond the dipole gradient is
unfortunate; with the recent implementation of CCSD(T)
polarizability gradients,>*® this situation is beginning to change.

7. MOLECULAR PROPERTIES IN THE LIQUID AND
SOLID PHASES

The changes observed in a molecule when going from the gas
phase to the liquid or solid phase are conveniently divided into
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Table 5. Pure Vibrational Contributions to the Polarizability #?* = [”], First Hyperpolarizability # = [ua] + ], and Second
Hyperpolarizability y** = [uf] + [«*] + [u*a] + [u*] for Exact Nuclear—Electronic Wave Functions in the Born—Oppenheimer

Approximation in the Notation (P) = ( M|P|N )*
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“The notation Y’ indicates that the summations are over excited states only.

direct and indirect effects.®'® The direct effects arise from the
polarization of the solute’s electron density by the surrounding
solvent molecules or by the surrounding crystal molecules; the
indirect effects arise from relaxation of the solute’s geometry
induced by this polarization. We here focus on the direct solvent
effects, noting that the indirect effects are straightforwardly
accounted for by allowing the molecular structure to relax in
the presence of the solvent.

Solvent effects are usually treated by one of the following
solvation models: the supermolecule model, the multilevel
model, or the implicit model. In the following these models
are discussed briefly; for more detailed discussions we refer to
the review by Tomasi, Mennucci, and Cammi,*'® where cal-
culation of molecular properties of solvated molecules is also
treated. As an illustration of the accuracy of explicit, dis-
crete, and continuum approaches for calculation of the excita-
tion energies, we refer to the recent study on camphor by
Kongsted et al.*"’

7.1. Supermolecular Models

The supermolecular model is conceptually the simplest solva-
tion model. The properties of the solute are calculated in the
presence of the neighboring solvent molecules, which are treated
at the same theoretical level as the solute. For correlated wave
function methods this approach has severe limitations with
respect to the size of the systems that can be treated, although
recent advances in linear-scaling techniques, local correlation
methods, and incremental schemes have made this approach
more practical,'>7?0%20221L8207822 & ontributing factor to the
high cost of such studies is the need to perform a statistical
averaging over solute—solvent configurations, a procedure that
may require sampling over 100—500 configurations depending
on the property of interest.***

In discussing supermolecular property calculations it is im-
portant to distinguish between intensive and extensive pro-
perties. Asymptotically, intensive molecular properties are in-
dependent of the size of the system, whereas extensive properties

are proportional to the system size. Intensive properties are
easily extracted from supermolecular calculations, as the solvent
molecules only act as perturbers on the property of interest.
Extensive properties, by contrast, depend on the response of all
molecules present in the system; a polarizability calculation, for
example, provides the polarizability of all molecules in the
system rather than that of the solute alone. Indeed, the response
may actually be dominated by the solvent molecules and by
surface effects.

For extensive properties a differential-shell approach has been
proposed,®** where the molecular property of interest is calcu-
lated as the difference between the property of the full system
(solute and solvent) and the property of the system with the
solute removed. The approach has been used with some success,
reproducing experimental solvent shifts*** for the first hyperpo-
larizability, for which it reproduces the experimentally observed
sign change for water going from the gas to the liquid phase; it has
also been applied to the magnetizability*®® and the Cotton—
Mouton effect.*”> In some cases the solute itself may produce an
imprint on the solvent configuration, for instance, for a chiral
molecule in an achiral solvent. In these cases a supermolecular
calculation is necessary to recover these effects. Perhaps the most
striking example of such an effect was provided by Zuber,
Beratan, and co-workers, who showed that the largest effect on
the optical rotation of methyloxirane solvated in water or
benzene arises from the response of the solute’s imprint on the
solvent structure.***®” This observation also explained the
strong solvent dependence observed for methyloxirane and, in
particular, the change of sign of its optical rotation when
changing the solvent from benzene to water.*””

From a methodological point of view, supermolecular models
do not require special computational technology beyond those
methods developed for studying isolated molecules in the gas
phase. We therefore do not discuss these models further here but
note that, because of the large systems considered, DFT is the
method of choice for such calculations. Furthermore, given the
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Table 6. Contributions to Dynamic Vibrational Polarizabilities and Hyperpolarizabilities”
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dynamic nature of the liquid system, a conformational averaging
is in general needed. This can be achieved either by a Boltzmann
averaging over energetically accessible equilibrium structures
or by a sampling of lnstantaneous solute solvent configura-
tions generated by Car— Parrinello®*® or molecular-dynamics**’
simulations.

7.2. Multilevel Models

In the %uantum—mechanics/ molecular-mechanics (QM/MM)
approach™° ™% the solute is treated quantum mechanically by a
suitable electronic-structure method whereas the solvent is
treated by molecular mechanics. Phenomenologically, we may
write the energy of the QM/MM system as

EQU/MM

— g 4 pMM 4 pQW/MM (665)

where EQ 1s the energy of the quantum-mechanical part of the

system, EM™ the classical energy < of the solvent described by

molecular mechanics, and E¥" the energy arising from the

interaction between the solute and the solvent. The molecular-
. MM . o

mechanics energy E* contains contributions from parame-

trized force fields involving bond stretching and bending

motions, and van der Waals interactions are typically modeled
using a Lennard—Jones otentlal

The coupling term EXM™ requires special attention. In the
simplest case the MM surroundings may be represented by
(distributed) multipoles (charges, dipoles, quadrupoles, etc.)*** 835

EQM/MM(unpol) _ Enuc/mul + Eel/mul (666)

_ Enuc/mul + <0|Ges‘0>

where E™™! js the interaction energy between the nuclear
charges of the solute and the distributed multipoles used to describe
the surrounding nuclei while G™ describes the electrostatic
(Coulomb) interaction between the electrons of the solute with
the MM multipoles. In practice, the QM/MM calculations are
performed in the same manner as conventional quantum-chemical
calculations but with a modified one-electron part due to the
additional Coulomb interactions, see, for example refs 592, 835,
and 836.

Although the multipolar description of the solvent often works
well for energies, it is in most cases inadequate for molecular
properties, where the perturbation associated with the property
of interest polarizes both solvent and solute, thereby affecting the
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solute—solvent interaction. Such polarization effects can be ac-
counted for by introducing induced dipoles, in addition to the
static multipole moments, at the MM sites. In a compact notation

pm = gt (667)

where the induced dipole moment ™ and the polarizability
a collect all dipole vectors and polarizability tensors at the
MM sites and where F*" = F** + F™ represents the total
electric field (at the MM sites) as composed of a static com-
ponent (due to the QM nuclei, QM electrons, and the MM
multipoles) and an induced component (due to the induced
dipoles themselves).

At the correlated level of electronic-structure theory, Kongsted
and co-workers developed a coupled-cluster/molecular-
mechanics (CC/MM) method for accurate studies of molec-
ular properties in solution, within the framework of a polariz-
able molecular-mechanics force field. Expectation values and
dipole moments were first studied,*” followed shortly by
implementation of the linear response function at the CC/MM
level of theory.*** **® Although polarizabilities have been stu-
died, the main focus in these studies is the excitation energies
and transition moments, for which a detailed comparison with
experiment is possible. We note, however, that the CC/MM
methodology was able to reproduce the sign change of the optical
rotation of (R)-methyloxirane when going from the gas phase to
solution.**”

Kongsted and co-workers later extended their CC/MM
approach to quadratic response theory, presenting calculations
of first hyperpolarizabilities®*' and TPA cross sections®** of
solvated molecules. Given the high cost of coupled-cluster
theory, in particular, with triples included, it becomes important
to reduce the number of solute —solvent configurations that need
to be averaged. Osted et al.**’ performed an investigation on
liquid water, paying particular attention to how the computa-
tional cost can be reduced while maintaining accuracy.

Recently, the polarizable QM/MM method was significantly
extended by incorporating self-consistent polarization effects in a
more efficient fashion, appropriate for systems with thousands of
MM sites. The new strategy is referred to as the polarizable
embedding (PE) model.*** Sneskov et al.*** extended the PE
method to linear and quadratic response functions at the CC2
and CCSD levels of theory, including also an approximate
treatment of triple excitations through the CCSDR(3)/MM
model.*** In the PE approach the environmental effects are
conveniently incorporated into a coupled-cluster QM/MM
quasi-energy Lagrangian

; ; 1/ . A\T
/‘\/) y “/; < A (0) ‘GeS|CC(0)> E<”mcl) o U
(668)

where /7 is the standard QM part defined in eq 491 whereas U
represents the remaining contributions to the total energy, which
do not have an explicit dependence on the electronic parameters
and thus are of minor importance from a coupled-cluster
response point of view. Employing the same strategy as in the
vacuum case (see section 4.3), we obtain modified amplitude and
multiplier equations

0 = (ulexp(—T)(H + G)exp(T)|HF) (669)

0=(A"|H + G, 7,)/cc?) (670)

The only difference compared with the vacuum equations is the
presence of an effective solvent operator

= 67— Y up e (671)
a, v

which couples the amplitude and multiplier equations. Here, €, is
a second-quantized operator representing the field at an MM site
due to the QM electrons, the summation running over all
Cartesian components (index ) of all MM sites (index a). It
is important to note the prominent role of the Lagrangian in this
solvent model. In conventional vacuum coupled-cluster theory
the Lagrangian is not needed for calculating energies but con-
venient for calculating other properties. In coupled-cluster QM/
MM theory it is the cornerstone of the model: it is only the
evaluation of the energy Lagrangian itself that guarantees con-
vergence to the FCI limit. A related difference to vacuum theory
is the coupled nature of eqs 669 and 670, arising from the self-
consistent inclusion of polarization. For details, see ref 835.

Recently, Steindal et al.** presented a fully polarizable three-
level model in which the polarizable QM/MM apg)roach was
combined with the PCM of Tomasi and Mennucci.”****® The
method was used to study excitation energies in solution,
exploring the convergence of the excitation energies with
the radius of the cutoff sphere used to define the solute—
solvent clusters. An alternative three-level model is based on the
use of the effective fragment potential (EFP) model in combi-
nation with the PCM.***®° Both these methodologies
thus allow for fully polarizable multiscale models. However,
only gradients have so far been implemented for the EFP/
PCM model.

In the reference-interaction-site model (RISM) the liquid is
represented by a set of atoms where chemical bonds are
described by strong intramolecular correlations. The approach
was first proposed by Chandler and Anderson®" and applied to
molecules by inclusion of charge distributions and molecular
structure by Hirata and Rossky.*>%** The methodology was put
in a quantum-mechanical framework by Hirata, Kato, and Ten-
No, 5855 referred to as the RISM-SCF method. The statistical
nature of the solute—solvent interactions are included through
correlation functions, and the interactions between the solute and
the solvent are expressed in the form of an integral equation. A
comparison of the performance of the RISM-SCF and PCM
approaches has been presented by Sato and Sakaki.**® The RISM-
SCF method has been extended to treatment of nondynamical
solvation of excited states (vide infra) by Ishida et al.**”

An early application of the RISM-SCF approach was calcula-
tion of NMR chemical shieldings and the gas-to-liquid solvation
shift of water®*® using London orbitals for gauge-origin indepen-
dence. An interesting property of the statistical nature of the
RISM approach is the possibility to study temperature and
density effects; however, the results reported in ref 858 were in
poor agreement with experiment, and the method has since not
been used for such purposes. This is unfortunate as the poor
agreement may have arisen from a need to include the nearest-
neighbor solvent molecules in the qguantum—mechanical descrip-
tion of the shielding constants.*******% The RISM-SCF method
has been extended to calculation of molecular gradients, includ-
ing CCSD(T) gradients, allowing for an automated optimization
of molecular structures in solution.**"*

In the EFP method of Gordon and Jensen®® exchange-
repulsion effects are included in the ground state in addition to
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Table 7. Electrostatic Contributions to the n — &* Transition Energies (cm™") in Acetone in Various Solvents, Comparing

Equilibrium and Nonequilibrium Solvation”

transition energies

excitation-energy shift relative to cyclohexane

equilibrium nonequilibrium equilibrium nonequilibrium exp.

cyclohexane 37386 37386 0 0 0
CH,Cl, 37529 37611 143 225 570
ethanol 37919 38256 524 870 1360
water 37960 38342 574 956 2000

“ Results taken from ref 883 and obtained at the CAS(4,3)/6-31G(d) level of theory.

the electrostatic and polarization contributions included in the solvent and the Hamiltonian becomes

QM/MM methods. As such, for the ground-state energy the EFP " .

approach is somewhat more complicated to implement than the H™ =H + H (672)

polarized QM/MM approach but includes effects that are
important, in particular, for description of surfaces and interfaces
and for the solvation process itself. As for the RISM-SCF method,
one of the first applications of the EFP method was to model
NMR shielding constants.*** In the most recent EFP formulations
molecular gradients have been implemented at the Hartree—
Fock and Kohn—Sham levels of theory;*******% Kohn—Sham
linear response functions®” and excited-state gradients have also
been implemented.** In the Kohn—Sham implementation, ex-
change repulsion is treated by a set of fitting parameters, in contrast
to the Hartree—Fock implementations where the exchange con-
tribution is treated more rigorously, allowing for a simpler theore-
tical framework and application to response properties.

An emerging technique that may prove important for property
calculations is the density embedding of wave function models of
Carter et al,**®*® recently extended by Gomes et al. to calcula-
tion of solvatochromic shifts.”® The method is based on the
embedding scheme of Wesolowski and Warshel®”' for weakly
interacting systems, where the solvent is described by DFT. This
technique is useful in that it enables us to study the solute
with high-level quantum-chemistry methods while retaining a
quantum-mechanical description of the solvent. The ap-
proach has been generalized to coupled chromophores within
a fully DET-in-DET model;*’* it would be interesting to see
an extension of this method to a wave function treatment of

the solute.
We finally note that the three-level multiscale ONIOM
approach®**”* may also be used for solvation studies. As for

all methods involving specific solvent molecules, dynamical
averaging must be taken into account. The ONIOM approach
is a difference approach, where the result for the solute or
molecule of interest is obtained by a set of energy differences
between different model calculations. It is therefore straightfor-
ward to calculate molecular properties for any computational
model that allows for calculation of molecular properties. As
such, the developments discussed in earlier sections for calcula-
tion of gas-phase molecular properties can be straightforwardly
applied in the ONIOM approach.

7.3. Continuum Models

A different approach to solvation is to assume that because of
dynamical averaging the solvent can be represented as a struc-
tureless, homogeneous, polarizable dielectric medium, with the
solute contained inside a cavity in the medium. This assumption
forms the basis for the continuum models.®'® In this way we do
not have to consider the internal degrees of freedom of the
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where H is the isolated solute Hamiltonian and H™" describes the
interaction between the solute and the solvent. The solvent is
represented by a dielectric constant, which may be tensorial for
nonisotropic media such as liquid crystals®’® or position depen-
dent for inhomogeneous systems such as surfaces or
interfaces.®’ "% Given that the Hamiltonian H*® describes
the interaction between the solute and a polarizable dielectric
medium it depends on the solute density. Therefore, as for the
polarizable QM/MM models, the Schrodinger equation must be
solved in a self-consistent manner. Sgecial care needs to be given
to methods that are nonvariational *****! However, the frame-
work presented in section 3 can straightforwardly be extended to
include the effects of a dielectric continuum by addition of a
contribution from the interaction Hamiltonian, whose form
depends on the description of the solute—solvent interactions
(in terms of, for instance, boundary-element methods or multi-
pole expansions).®"®

In continuum calculations the properties of the solvent are
described by a dielectric constant that has both a static and an
optical component. Whereas the static dielectric constant de-
scribes both nuclear and electronic polarization of the dielectric
medium, the optical dielectric constant describes only the
electronic polarization. The optical dielectric constant is appro-
priate for processes involving dynamic electromagnetic fields,
where only the electronic degrees of freedom are able to
respond to the applied perturbation (with the nuclear degrees
of freedom remaining in their unperturbed state), resulting in
nonequilibrium solvation.*®* While there is a large variation in
the static dielectric constant for different compounds (from
about 2 for nonpolar molecules to about 80 for highly polar
solvents such as water), the variation in the optical dielectric
constant is small (between 1.5 and 2.5 depending on the
electronic polarizability of the solvent). Nonequilibrium solva-
tion is of little concern for nonpolar solvents (because of the
small differences between the static and optical dielectric
constants) but can be significant for polar solvents. This is
illustrated for the excitation energies of acetone in Table 7,
where large shifts in the excitation energies also arise from
nonelectrostatic interactions, which can be accounted for by
including the neighboring solvent molecules in the quantum-
mechanical system. %%

The origin of nonequilibrium solvation is illustrated in Figure 3.
From an equilibrated ground-state electronic structure the
molecule is excited into a solvated structure where only the
electronic degrees of freedom of the solvent are able to adjust
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Figure 3. Schematic representation of nondynamical solvation effects
in absorption and emission processes. Reprinted with permission of
Luca Frediani (University of Tromse), 2011.
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instantaneously to the solute excitation. Given sufficient time the
solvent molecules readjust to the excited-state electron density of
the solute, leading to a new excited-state equilibrated structure,
from which the molecule may be de-excited into a nonequili-
brated ground-state electronic structure. Because of the induced
restructuring of the solute in the excited state, absorption and
emission energies are no longer identical. Note that during the
equilibration time for the excited state, the solute geometry may
relax, giving rise to an additional indirect solvation effect on the
difference between the absorption and the emission spectra of
the solute. Even without considering nuclear relaxation the
separation of the solvent response into static and dynamic parts
means that there is no longer a one-to-one correspondence
between excitation energies obtained by an explicit optimization
of the excited state and by linear response theory, as demon-
strated by Cammi.**®

Over the years a variety of continuum models, differing in the
choice of H™, have been proposed; for a recent review, see ref
818. We consider here continuum models that have been
extended to calculation of molecular properties and comment
on their suitability for studies of solvation effects, the main
difference between these being the shape of the cavity in which
the solute is placed.

Mikkelsen and co-workers developed a continuum model with
a spherical cavity.®® Because of the simple cavity structure the
solute—solvent interactions can be represented by a multipole expan-
sion of the solute density. This model has been adapted to MCSCF
cubic response theory with nonequilibrium solvation,™ ~*” to gauge-
origin-independent calculations of NMR shielding constants and
magnetizabilities with London orbitals,*8%%%*
tric—magnetic properties,”>>*”* to nonequilibrium solvation with
triplet perturbations,891 and to inhomogeneous solvation (e.g,
from a metal surface) up to cubic response functions.*’**”” The
spherical-continuum model has recently been extended to linear
and quadratic coupled-cluster response theory®*"**%7 with
applications to optical rotation.*” A review of the field has been
provided by Mikkelsen.*”®

The cavity shape and distance between the nuclear positions
and the cavity boundary are nearly always empirical factors in
continuum calculations. An interesting exception to this rule was
presented by Luo et al.**” By combining the classical Maxwell
field theory with quantum-chemical reaction-field theory using
spherical cavities these authors showed that the cavity radius is
uniquely determined by the calculated polarizability and di-
electric constant of the neat liquid. The radius for a spherical

to mixed elec-
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cavity of a neat liquid is therefore uniquely defined and no longer
a parameter in the calculation.

Use of a spherical cavity leads to a simple interaction Hamil-
tonian, requiring only calculation of multipole integrals (and
their derivatives for perturbation-dependent basis sets). How-
ever, accurate results can only be expected for molecules of a
nearly spherical shape or for properties that depend on the
response along the longest molecular axis, for example, nonlinear
optical properties of conjugated push—pull molecules.”® In
general, a more realistic, molecule-shaped cavity must be used,
as provided bgf the polarizable-continuum model (PCM) in its
various flavors™**%*$%91=9% and by the conductor-screening model
(COSMO) %~ I, these models the cavity surface is partitioned
into small surface elements, onto which charges are attached to
describe the induced polarization. For calculations of properties with
wave function methods, the PCM is used more often than the
COSMO model; given the focus on wave function methods in this
review our discussion of solvent calculations with molecule-shaped
cavities is therefore biased toward PCM calculations.

The PCM has been extended to the calculation of linear,
quadratic, and cubic response functions using MCSCF wave
functions,”"' ~*'* including nonequilibrium solvation and local-
field effects.”’® Ferrighi et al. implemented the calculation of
magnetizabilities using London orbitals.>”" Also, zero-field split-
tings have been studied using continuum models within the
framework of a spherical-cavity approach and using MCSCF
wave functions.>'”>'" However, solvent effects on magnetic
properties are in general poorly re;)roduced both by con-
tinuum*¥**?1¢ and by QM/MM®""~**! models. It appears
mandatory to include the nearest solvent molecules in the quantum
system, indicating the presence of quantum effects that cannot be
recovered by the simple electrostatic PCM and QM/MM models. It
would be of interest to investigate whether visualization of ring
currents*™*® in weakly interacting systems would reveal effects of
ring-current interactions in solvated complexes.

Finally, we note that Caricato et al. combined the EOM-CC
method with PCM®** as an alternative to the coupled-cluster
linear-response approach of Christiansen and Mikkelsen.**"7
Cammi also described evaluation of molecular gradients for
excited states using the EOM-CC method.”*

7.4. Molecular Properties with Periodic Boundary Conditions
Restricting ourselves to wave function methods, the number
of studies of molecular properties in the solid state are limited,
mainly because few codes have been developed for calculations
subject to periodic boundary conditions, although we note the
recently presented projected-augmented wave code by Marsman
et al.”>* More fundamentally, the representation of the electric
dipole operator is nontrivial for periodic systems, noting that the
form given in eq 62 breaks the periodicity of the sample.”>>**°
Hartree—Fock codes for treating one-dimensional systems
were gpresented independently by Champagne and Andre”*” and
Otto”® in 1992. Otto applied the code to the calculation of polar-
izabilities and hyperpolarizabilities of linear chains of hydrogen,
water, and lithium hydride molecules, whereas Champagne and
Andre focused on the polarizabilities of polyethene and polysilane.”””
An alternative formulation was later presented by Kirtman
et al.”* On the basis of the approaches for one- and two-
dimensional systems by Del Re et al.”*° and by André et al.,”*"*>
Hirata and Iwata imglemented analytic molecular gradients at the
MP2 level of theory” > and force fields at the Hartree—Fock level
of theory.”** An implementation of time-dependent Hartree—Fock
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theory for one-dimensional periodic systems has also been
developed.”®

For two- and three-dimensional systems Kudin and Scuseria
first presented a finite-field approach to the calculation of polariz-
abilities of periodic systems at the Hartree—Fock level of theory,”*
later extended to the analytic calculation of Hartree—Fock and
Kohn—Sham frequency-dependent polarizabilities by Izmaylov
et al.”*” The group of Scuseria also developed analytic ap-
proaches for calculation of forces,”*® force fields,”*” and dipole
gradients.”*® A geometry optimization method based on inter-
nal coordinates has also been presented by the same group.”*' In a
parallel development, Dovesi and Orlando reported similar exten-
sions in the CRYSTAL code for molecular grad.ients,942 static
polarizabilities,”* and first hyperpolarizabilities”**** at the
Hartree—Fock and Kohn—Sham levels of theory. Maschio et al.
furthermore presented the first optimized structures at the
local-MP2 level of theory for periodic systems using a mixed
analytic and numerical scheme.”*®

8. CONCLUDING REMARKS

Molecular properties can nowadays be calculated for all
important wave function models using the sophisticated meth-
ods developed in quantum chemistry over the last decades. The
underlying framework for such calculations is molecular response
theory. In the present review we have given a uniform treatment
of this theory, applicable to time-dependent and time-indepen-
dent perturbations, to variational and nonvariational wave func-
tion models, for perturbation-dependent and perturbation-
independent basis sets. This general framework will undergo
further developments and adaptations in the future, for example,
to the linear-scaling calculation of molecular properties of large
molecular systems at the correlated and uncorrelated levels of
theory, to calculation of molecular properties using explicitly
correlated methods, and to calculation of properties using multi-
configurational coupled-cluster techniques. The future will also
see a stronger merging of wave function and density-functional
methods, for example, through development of range-separated
and orbital-dependent functionals for exchange and correlation;
such developments will necessitate a merging of property
techniques for wave function and density-functional methods.
We believe the property techniques presented and reviewed here are
sufficiently flexible to be adapted to all these developments of
quantum chemistry, although the increasing accuracy of quantum-
chemical calculations may lead to development of techniques that
go beyond the regular perturbation-theory approach within the
minimal-coupling scheme discussed by us.”*”

As demonstrated in the present review, molecular response theory
has been applied to a vast range of systems and perturbations. Apart
from calculation of molecular forces and force constants, essential to
explore chemistry, molecular response theory is today applied to all
forms of molecular spectroscopy for interpretation and prediction of
molecular spectra and spectroscopic constants. Important theoretical
developments over the last two decades have been application of
quantum chemistry to magnetic resonance spectroscopies, optical
activity and birefringence, nonlinear optics, and excited-state proper-
ties. In the future, the range of molecular properties routinely studied
theoretically will broaden further to reflect new experimental devel-
opments in nonlinear and multidimensional electronic and vibra-
tional spectroscopies. Although these and related applications of
quantum chemistry have not all been fully reviewed here, we believe
that our review is sufficiently exhaustive to direct the reader to the
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most important developments in wave function-based molecular
response theory over the last two decades.
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ACRONYMS

ADC algebraic diagrammatic construction [model]

ADC(n) nth-order ADC [model]

AO atomic orbital

BCH Baker—Campbell—Hausdorff [expansion]

B3LYP Becke-3-parameter—Lee—Yang—Parr
[functional]

CAM-B3LYP Coulomb-attenuating-method B3LYP
[functional ]

CARS coherent anti-Stokes Raman scattering

CAS complete active space

CASPT2 second-order CAS perturbation theory

CC coupled cluster [model]
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CCn

CCS
CCSD
CCSDPPA
CCSDR(3)
CCSDT
CCSD(T)

CCSDTQ
CCSDTQS

CD
C1

CIS

CISD
CIS(D)
CISDT
CISDTQ
CIS(Dy.)
COSMO
CTOCD-DZ

DB-RI-MP2
DFT
DFWM
DPT
DPTn
ECD
EFGB
EFP
EOM-CC
EOPE
EPR
ESHG
FCI
FNO-CC
GIAO
GUGA
HF

IDRI
ACCSD(T)
MCD
MCSCF
MM

MO

MPn
MRCI
MRCISD
MRMP2
NESC

NEVPT2

NMR
NQR
NSR
OMO
ONIOM

CC [rank] n [hybrid model]

CC singles [model]

CC singles—doubles [model]

CCSD polarization-propagator approximation
CC singles—doubles—response-triples [model]
CC singles—doubles—triples [model]

CC singles—doubles—perturbative-triples
[model]

CC singles—doubles—triples—quadruples
[model]

CC singles—doubles—triples—quadruples—
quintuples [model]

circular dichroism

configuration interaction [model]

CI singles [model]

CI singles—doubles [model]

CI singles—perturbative-doubles [model]

CI singles—doubles—triples [model]

CI singles—doubles—triples—quadruples [model]
iterative CIS(D) [model]
conductor-screening model

continuous transformation of the origin of the
current density by setting diamagnetic contribution
to zero [model]

dual-basis-RI-MP2 [model]

density-functional theory

degenerate four-wave mixing

direct perturbation theory

n-order DPT

electronic CD [spectroscopy]
electric-field-gradient-induced birefringence
effective fragment potential [model]

equation of motion CC [model]

electro-optic Pockels effect

electron paramagnetic resonance
electric-field-induced SHG

full-CI [model]

frozen-natural-orbital-CC
gauge-origin-including AO

graphical unitary group approach
Hartree—Fock [model]

intensity-dependent refractive index

A-based CCSD(T) [model]

magnetic CD [spectroscopy]
multiconfigurational SCF [model]

molecular mechanics

molecular orbital

n-order Moller—Plesset [model]
multireference CI [model]

multireference CISD [model]

multireference MP2 [model]

normalized elimination of the small component
[model]

second-order n-electron valence-state
perturbation theory

nonlinear optics

nuclear magnetic resonance

nuclear quadrupole resonance

nuclear spin rotation

orthonormalized MO

our own #-layer integrated molecular orbital and
molecular mechanics [ model]

OR optical rectification

PCM polarizable-continuum model

RISM reference-interaction-site model

QM quantum mechanics

RAS restricted active space

RHF restricted HF [model]

RI resolution of the identity

RJCOSX-MP2 RI-J chain of spheres exchange MP2 [model]
ROA Raman optical activity

SAC-CI symmetry-adapted-cluster CI [model]

SCF self-consistent field

SCS spin-component-scaled [model]

SHG second-harmonic generation

SOPPA second-order polarization-propagator approxima-

tion
SOPPA(CCSD) SOPPA with CCSD amplitudes
SOPPA(CC2) SOPPA with CC2 amplitudes

SORA second-order regular approximation

SO-RASSI spin—orbit RAS state interaction [model]

SORCI spectroscopy-oriented MRCI [model]

SOS scaled opposite spin [model]; sum-over-states
[expression]]

TDDFT time-dependent DFT

TDSCF time-dependent self-consistent field [method]

THG third-harmonic generation

TPA two-photon absorption

TPCD two-photon CD

UMO unmodified MO

uv ultraviolet

VCD vibrational CD

VMF vibration-mode-following [model]

XCCn expectation-value CCn [model]

XCCSD expectation-value CCSD [model]

(X)ccsb noniterative XCCSD [model]

ZORA zero-order regular approximation
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NOTE ADDED IN PROOF

Reference to relatively recent work of Kowalski and co-
workers on coupled-cluster response properties (see, e.g,, refs
948—950 and references therein) and on the completely-renor-
malized EOM-CC formalism for excited-state energies (see, e.g.,
ref 951 and references therein) was inadvertently omitted in
sections 4.6.3, 5.5, and S.8.
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